These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 3427038)
1. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 1. M412 and L550 intermediates. Roepe P; Ahl PL; Das Gupta SK; Herzfeld J; Rothschild KJ Biochemistry; 1987 Oct; 26(21):6696-707. PubMed ID: 3427038 [TBL] [Abstract][Full Text] [Related]
2. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 2. Tyrosines-26 and -64. Roepe P; Scherrer P; Ahl PL; Das Gupta SK; Bogomolni RA; Herzfeld J; Rothschild KJ Biochemistry; 1987 Oct; 26(21):6708-17. PubMed ID: 3427039 [TBL] [Abstract][Full Text] [Related]
3. Environmental effects on formation and photoreaction of the M412 photoproduct of bacteriorhodopsin: implications for the mechanism of proton pumping. Kalisky O; Ottolenghi M; Honig B; Korenstein R Biochemistry; 1981 Feb; 20(3):649-55. PubMed ID: 7213600 [TBL] [Abstract][Full Text] [Related]
4. Tyrosine protonation changes in bacteriorhodopsin. A Fourier transform infrared study of BR548 and its primary photoproduct. Roepe PD; Ahl PL; Herzfeld J; Lugtenburg J; Rothschild KJ J Biol Chem; 1988 Apr; 263(11):5110-7. PubMed ID: 3356682 [TBL] [Abstract][Full Text] [Related]
5. Evidence for a tyrosine protonation change during the primary phototransition of bacteriorhodopsin at low temperature. Rothschild KJ; Roepe P; Ahl PL; Earnest TN; Bogomolni RA; Das Gupta SK; Mulliken CM; Herzfeld J Proc Natl Acad Sci U S A; 1986 Jan; 83(2):347-51. PubMed ID: 3001733 [TBL] [Abstract][Full Text] [Related]
6. Deprotonation of tyrosines in bacteriorhodopsin as studied by Fourier transform infrared spectroscopy with deuterium and nitrate labeling. Lin SL; Ormos P; Eisenstein L; Govindjee R; Konno K; Nakanishi K Biochemistry; 1987 Dec; 26(25):8327-31. PubMed ID: 3442658 [TBL] [Abstract][Full Text] [Related]
7. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts regenerated with deuterated tyrosine. Dollinger G; Eisenstein L; Lin SL; Nakanishi K; Termini J Biochemistry; 1986 Oct; 25(21):6524-33. PubMed ID: 3790539 [TBL] [Abstract][Full Text] [Related]
9. FTIR difference spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: detection of a stable O-like species and characterization of its photocycle at low temperature. He Y; Krebs MP; Fischer WB; Khorana HG; Rothschild KJ Biochemistry; 1993 Mar; 32(9):2282-90. PubMed ID: 8443171 [TBL] [Abstract][Full Text] [Related]
10. Infrared evidence that the Schiff base of bacteriorhodopsin is protonated: bR570 and K intermediates. Rothschild KJ; Marrero H Proc Natl Acad Sci U S A; 1982 Jul; 79(13):4045-9. PubMed ID: 6955790 [TBL] [Abstract][Full Text] [Related]
11. Conformational changes in bacteriorhodopsin studied by infrared attenuated total reflection. Marrero H; Rothschild KJ Biophys J; 1987 Oct; 52(4):629-35. PubMed ID: 3676442 [TBL] [Abstract][Full Text] [Related]
12. Fourier transform infrared evidence for Schiff base alteration in the first step of the bacteriorhodopsin photocycle. Rothschild KJ; Roepe P; Lugtenburg J; Pardoen JA Biochemistry; 1984 Dec; 23(25):6103-9. PubMed ID: 6525348 [TBL] [Abstract][Full Text] [Related]
13. Resonance Raman spectroscopy of the retinylidene chromophore in bacteriorhodopsin (bR570), bR560, M421, and other intermediates: structural conclusions based on kinetics, analogues, models, and isotopically labeled membranes. Marcus MA; Lewis A Biochemistry; 1978 Oct; 17(22):4722-35. PubMed ID: 728381 [TBL] [Abstract][Full Text] [Related]
14. Fourier transform infrared evidence for proline structural changes during the bacteriorhodopsin photocycle. Rothschild KJ; He YW; Gray D; Roepe PD; Pelletier SL; Brown RS; Herzfeld J Proc Natl Acad Sci U S A; 1989 Dec; 86(24):9832-5. PubMed ID: 2602377 [TBL] [Abstract][Full Text] [Related]
15. Time-resolved X-ray diffraction study of structural changes associated with the photocycle of bacteriorhodopsin. Koch MH; Dencher NA; Oesterhelt D; Plöhn HJ; Rapp G; Büldt G EMBO J; 1991 Mar; 10(3):521-6. PubMed ID: 2001671 [TBL] [Abstract][Full Text] [Related]
17. Transient photovoltages in purple membrane multilayers. Charge displacement in bacteriorhodopsin and its photointermediates. Hwang SB; Korenbrot JI; Stoeckenius W Biochim Biophys Acta; 1978 May; 509(2):300-17. PubMed ID: 656415 [TBL] [Abstract][Full Text] [Related]
18. Tryptophan fluorescence quenching as a monitor for the protein conformation changes occurring during the photocycle of bacteriorhodopsin under different perturbations. Jang DJ; el-Sayed MA Proc Natl Acad Sci U S A; 1989 Aug; 86(15):5815-9. PubMed ID: 2762298 [TBL] [Abstract][Full Text] [Related]
19. [Light-induced changes in quantum yields of the photochemical cycle of conversion of bacteriorhodopsin and transmembrane proton transfer in cells of Halobacterium halobium]. Dubrovskiĭ VT; Balashov SP; Sineshchekov OA; Chekulaeva LN; Litvin FF Biokhimiia; 1982 Jul; 47(7):1230-40. PubMed ID: 7115823 [TBL] [Abstract][Full Text] [Related]
20. The effect of antibiotics on the photocycle and protoncycle of purple membrane suspensions. Avi-Dor Y; Rott R; Schnaiderman R Biochim Biophys Acta; 1979 Jan; 545(1):15-23. PubMed ID: 83163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]