BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 34270439)

  • 1. Effective Transfer Learning Algorithm in Spiking Neural Networks.
    Zhan Q; Liu G; Xie X; Sun G; Tang H
    IEEE Trans Cybern; 2022 Dec; 52(12):13323-13335. PubMed ID: 34270439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing.
    Kim Y; Panda P
    Neural Netw; 2021 Dec; 144():686-698. PubMed ID: 34662827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning in spiking neural networks.
    Tavanaei A; Ghodrati M; Kheradpisheh SR; Masquelier T; Maida A
    Neural Netw; 2019 Mar; 111():47-63. PubMed ID: 30682710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancements in Algorithms and Neuromorphic Hardware for Spiking Neural Networks.
    Javanshir A; Nguyen TT; Mahmud MAP; Kouzani AZ
    Neural Comput; 2022 May; 34(6):1289-1328. PubMed ID: 35534005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progressive Tandem Learning for Pattern Recognition With Deep Spiking Neural Networks.
    Wu J; Xu C; Han X; Zhou D; Zhang M; Li H; Tan KC
    IEEE Trans Pattern Anal Mach Intell; 2022 Nov; 44(11):7824-7840. PubMed ID: 34546918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences.
    He W; Wu Y; Deng L; Li G; Wang H; Tian Y; Ding W; Wang W; Xie Y
    Neural Netw; 2020 Dec; 132():108-120. PubMed ID: 32866745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overview of Spiking Neural Network Learning Approaches and Their Computational Complexities.
    Pietrzak P; Szczęsny S; Huderek D; Przyborowski Ł
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HybridSNN: Combining Bio-Machine Strengths by Boosting Adaptive Spiking Neural Networks.
    Shen J; Zhao Y; Liu JK; Wang Y
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5841-5855. PubMed ID: 34890341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrocardiography Classification with Leaky Integrate-and-Fire Neurons in an Artificial Neural Network-Inspired Spiking Neural Network Framework.
    Rana A; Kim KK
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backpropagation-Based Learning Techniques for Deep Spiking Neural Networks: A Survey.
    Dampfhoffer M; Mesquida T; Valentian A; Anghel L
    IEEE Trans Neural Netw Learn Syst; 2023 Apr; PP():. PubMed ID: 37027264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning With Spiking Neurons: Opportunities and Challenges.
    Pfeiffer M; Pfeil T
    Front Neurosci; 2018; 12():774. PubMed ID: 30410432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence.
    Fang W; Chen Y; Ding J; Yu Z; Masquelier T; Chen D; Huang L; Zhou H; Li G; Tian Y
    Sci Adv; 2023 Oct; 9(40):eadi1480. PubMed ID: 37801497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locally connected spiking neural networks for unsupervised feature learning.
    Saunders DJ; Patel D; Hazan H; Siegelmann HT; Kozma R
    Neural Netw; 2019 Nov; 119():332-340. PubMed ID: 31499357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective Active Learning Method for Spiking Neural Networks.
    Xie X; Yu B; Liu G; Zhan Q; Tang H
    IEEE Trans Neural Netw Learn Syst; 2023 Mar; PP():. PubMed ID: 37030679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A universal ANN-to-SNN framework for achieving high accuracy and low latency deep Spiking Neural Networks.
    Wang Y; Liu H; Zhang M; Luo X; Qu H
    Neural Netw; 2024 Jun; 174():106244. PubMed ID: 38508047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A TTFS-based energy and utilization efficient neuromorphic CNN accelerator.
    Yu M; Xiang T; P S; Chu KTN; Amornpaisannon B; Tavva Y; Miriyala VPK; Carlson TE
    Front Neurosci; 2023; 17():1121592. PubMed ID: 37214405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware.
    Zou C; Cui X; Kuang Y; Liu K; Wang Y; Wang X; Huang R
    Front Neurosci; 2021; 15():694170. PubMed ID: 34867142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.