These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

905 related articles for article (PubMed ID: 34270479)

  • 41. A triple-classification radiomics model for the differentiation of pleomorphic adenoma, Warthin tumour, and malignant salivary gland tumours on the basis of diffusion-weighted imaging.
    Shao S; Zheng N; Mao N; Xue X; Cui J; Gao P; Wang B
    Clin Radiol; 2021 Jun; 76(6):472.e11-472.e18. PubMed ID: 33752882
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature.
    Li Y; Liu X; Qian Z; Sun Z; Xu K; Wang K; Fan X; Zhang Z; Li S; Wang Y; Jiang T
    Eur Radiol; 2018 Jul; 28(7):2960-2968. PubMed ID: 29404769
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An investigation of machine learning methods in delta-radiomics feature analysis.
    Chang Y; Lafata K; Sun W; Wang C; Chang Z; Kirkpatrick JP; Yin FF
    PLoS One; 2019; 14(12):e0226348. PubMed ID: 31834910
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Diffusion- and Perfusion-Weighted MRI Radiomics for Survival Prediction in Patients with Lower-Grade Gliomas.
    Park CJ; Kim S; Han K; Ahn SS; Kim D; Park YW; Chang JH; Kim SH; Lee SK
    Yonsei Med J; 2024 May; 65(5):283-292. PubMed ID: 38653567
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Radiomics Nomogram Building From Multiparametric MRI to Predict Grade in Patients With Glioma: A Cohort Study.
    Wang Q; Li Q; Mi R; Ye H; Zhang H; Chen B; Li Y; Huang G; Xia J
    J Magn Reson Imaging; 2019 Mar; 49(3):825-833. PubMed ID: 30260592
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Radiomics assessment of bladder cancer grade using texture features from diffusion-weighted imaging.
    Zhang X; Xu X; Tian Q; Li B; Wu Y; Yang Z; Liang Z; Liu Y; Cui G; Lu H
    J Magn Reson Imaging; 2017 Nov; 46(5):1281-1288. PubMed ID: 28199039
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas.
    Kandemirli SG; Kocak B; Naganawa S; Ozturk K; Yip SSF; Chopra S; Rivetti L; Aldine AS; Jones K; Cayci Z; Moritani T; Sato TS
    World Neurosurg; 2021 Jul; 151():e78-e85. PubMed ID: 33819703
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gliomas: Histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging--correlation with tumor grade.
    Kang Y; Choi SH; Kim YJ; Kim KG; Sohn CH; Kim JH; Yun TJ; Chang KH
    Radiology; 2011 Dec; 261(3):882-90. PubMed ID: 21969667
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamic Contrast-Enhanced Perfusion MRI and Diffusion-Weighted Imaging in Grading of Gliomas.
    Arevalo-Perez J; Peck KK; Young RJ; Holodny AI; Karimi S; Lyo JK
    J Neuroimaging; 2015; 25(5):792-8. PubMed ID: 25867683
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Noninvasively evaluating the grading and IDH1 mutation status of diffuse gliomas by three-dimensional pseudo-continuous arterial spin labeling and diffusion-weighted imaging.
    Liu T; Cheng G; Kang X; Xi Y; Zhu Y; Wang K; Sun C; Ye J; Li P; Yin H
    Neuroradiology; 2018 Jul; 60(7):693-702. PubMed ID: 29777252
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of two region-of-interest placement methods for histogram analysis of apparent diffusion coefficient maps for glioma grading.
    Hieu ND; Hung ND; Hung ND; Hien MM; Anh DV; Dung LT
    Clin Ter; 2024; 175(3):128-136. PubMed ID: 38767069
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI.
    Hu J; Zhao Y; Li M; Liu J; Wang F; Weng Q; Wang X; Cao D
    Eur J Radiol; 2020 Oct; 131():109251. PubMed ID: 32916409
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach.
    Li Y; Qian Z; Xu K; Wang K; Fan X; Li S; Jiang T; Liu X; Wang Y
    Neuroimage Clin; 2018; 17():306-311. PubMed ID: 29527478
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glioma grading using multiparametric MRI: head-to-head comparison among dynamic susceptibility contrast, dynamic contrast-enhancement, diffusion-weighted images, and MR spectroscopy.
    Seo M; Choi Y; Soo Lee Y; Ahn KJ; Kim BS; Park JS; Jeon SS
    Eur J Radiol; 2023 Aug; 165():110888. PubMed ID: 37257338
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T.
    Citak-Er F; Firat Z; Kovanlikaya I; Ture U; Ozturk-Isik E
    Comput Biol Med; 2018 Aug; 99():154-160. PubMed ID: 29933126
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Can machine learning models improve early detection of brain metastases using diffusion weighted imaging-based radiomics?
    Madamesila J; Tchistiakova E; Faruqi S; Das S; Ploquin N
    Quant Imaging Med Surg; 2023 Dec; 13(12):7706-7718. PubMed ID: 38106308
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differentiation of high-grade from low-grade diffuse gliomas using diffusion-weighted imaging: a comparative study of mono-, bi-, and stretched-exponential diffusion models.
    Kusunoki M; Kikuchi K; Togao O; Yamashita K; Momosaka D; Kikuchi Y; Kuga D; Hata N; Mizoguchi M; Iihara K; Suzuki SO; Iwaki T; Akamine Y; Hiwatashi A
    Neuroradiology; 2020 Jul; 62(7):815-823. PubMed ID: 32424712
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Grading Gliomas Capability: Comparison between Visual Assessment and Apparent Diffusion Coefficient (ADC) Value Measurement on Diffusion-Weighted Imaging (DWI).
    Phuttharak W; Thammaroj J; Wara-Asawapati S; Panpeng K
    Asian Pac J Cancer Prev; 2020 Feb; 21(2):385-390. PubMed ID: 32102515
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach.
    Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y
    Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Amide proton transfer weighted and diffusion weighted imaging based radiomics classification algorithm for predicting 1p/19q co-deletion status in low grade gliomas.
    Ma A; Yan X; Qu Y; Wen H; Zou X; Liu X; Lu M; Mo J; Wen Z
    BMC Med Imaging; 2024 Apr; 24(1):85. PubMed ID: 38600452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 46.