These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 34270617)

  • 1. Acyl-CoA oxidase ACOX-1 interacts with a peroxin PEX-5 to play roles in larval development of Haemonchus contortus.
    Shi H; Huang X; Chen X; Yang Y; Wang Z; Yang Y; Wu F; Zhou J; Yao C; Ma G; Du A
    PLoS Pathog; 2021 Jul; 17(7):e1009767. PubMed ID: 34270617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dafachronic acid promotes larval development in Haemonchus contortus by modulating dauer signalling and lipid metabolism.
    Ma G; Wang T; Korhonen PK; Young ND; Nie S; Ang CS; Williamson NA; Reid GE; Gasser RB
    PLoS Pathog; 2019 Jul; 15(7):e1007960. PubMed ID: 31335899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular alterations during larval development of Haemonchus contortus in vitro are under tight post-transcriptional control.
    Ma G; Wang T; Korhonen PK; Ang CS; Williamson NA; Young ND; Stroehlein AJ; Hall RS; Koehler AV; Hofmann A; Gasser RB
    Int J Parasitol; 2018 Aug; 48(9-10):763-772. PubMed ID: 29792880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hc-daf-2 encodes an insulin-like receptor kinase in the barber's pole worm, Haemonchus contortus, and restores partial dauer regulation.
    Li F; Lok JB; Gasser RB; Korhonen PK; Sandeman MR; Shi D; Zhou R; Li X; Zhou Y; Zhao J; Hu M
    Int J Parasitol; 2014 Jun; 44(7):485-96. PubMed ID: 24727120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional characterisation of the fork head transcription factor-encoding gene, Hc-daf-16, from the parasitic nematode Haemonchus contortus (Strongylida).
    Hu M; Lok JB; Ranjit N; Massey HC; Sternberg PW; Gasser RB
    Int J Parasitol; 2010 Mar; 40(4):405-15. PubMed ID: 19796644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acyl-CoA oxidase complexes control the chemical message produced by Caenorhabditis elegans.
    Zhang X; Feng L; Chinta S; Singh P; Wang Y; Nunnery JK; Butcher RA
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):3955-60. PubMed ID: 25775534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DAF-3 co-Smad molecule functions in Haemonchus contortus development.
    Di W; Liu L; Zhang T; Li F; He L; Wang C; Ahmad AA; Hassan M; Fang R; Hu M
    Parasit Vectors; 2019 Dec; 12(1):609. PubMed ID: 31881930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of a novel gene, Hc-dhs-28 and its role in protecting the host after Haemonchus contortus infection through regulation of diapause formation.
    Yang Y; Guo X; Chen X; Zhou J; Wu F; Huang Y; Shi H; Du A
    Int J Parasitol; 2020 Oct; 50(12):945-957. PubMed ID: 32858035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of heat shock protein 70 gene from Haemonchus contortus and its expression and promoter analysis in Caenorhabditis elegans.
    Zhang H; Zhou Q; Yang Y; Chen X; Yan B; Du A
    Parasitology; 2013 May; 140(6):683-94. PubMed ID: 23360558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High throughput LC-MS/MS-based proteomic analysis of excretory-secretory products from short-term in vitro culture of Haemonchus contortus.
    Wang T; Ma G; Ang CS; Korhonen PK; Koehler AV; Young ND; Nie S; Williamson NA; Gasser RB
    J Proteomics; 2019 Jul; 204():103375. PubMed ID: 31071474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of transcription profiles of the P-glycoprotein transporters of two Haemonchus contortus isolates: Susceptible and resistant to ivermectin.
    Reyes-Guerrero DE; Cedillo-Borda M; Alonso-Morales RA; Alonso-Díaz MA; Olmedo-Juárez A; Mendoza-de-Gives P; López-Arellano ME
    Mol Biochem Parasitol; 2020 Jul; 238():111281. PubMed ID: 32434064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gender-enriched transcripts in Haemonchus contortus--predicted functions and genetic interactions based on comparative analyses with Caenorhabditis elegans.
    Campbell BE; Nagaraj SH; Hu M; Zhong W; Sternberg PW; Ong EK; Loukas A; Ranganathan S; Beveridge I; McInnes RL; Hutchinson GW; Gasser RB
    Int J Parasitol; 2008 Jan; 38(1):65-83. PubMed ID: 17707841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional characterization of a novel gene, Hc-daf-22, from the strongylid nematode Haemonchus contortus.
    Guo X; Zhang H; Zheng X; Zhou Q; Yang Y; Chen X; Du A
    Parasit Vectors; 2016 Jul; 9(1):422. PubMed ID: 27472920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of hyaluronidase reduces invasion and establishment of Haemonchus contortus larvae in sheep.
    Yang X; Khan S; Zhao X; Zhang J; Nisar A; Feng X
    Vet Res; 2020 Aug; 51(1):106. PubMed ID: 32854758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dauer signalling pathway model for Haemonchus contortus.
    Ma G; Wang T; Korhonen PK; Stroehlein AJ; Young ND; Gasser RB
    Parasit Vectors; 2019 Apr; 12(1):187. PubMed ID: 31036054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of an R-Smad homologue (Hco-DAF-8) from Haemonchus contortus.
    Li FF; Gasser RB; Liu F; Shan JN; Di WD; He L; Zhou CX; Wang CQ; Fang R; Hu M
    Parasit Vectors; 2020 Apr; 13(1):164. PubMed ID: 32245505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Haemonchus contortus larval development by fungal lectins.
    Heim C; Hertzberg H; Butschi A; Bleuler-Martinez S; Aebi M; Deplazes P; Künzler M; Štefanić S
    Parasit Vectors; 2015 Aug; 8():425. PubMed ID: 26283415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A daf-7-related TGF-β ligand (Hc-tgh-2) shows important regulations on the development of Haemonchus contortus.
    He L; Liu H; Zhang BY; Li FF; Di WD; Wang CQ; Zhou CX; Liu L; Li TT; Zhang T; Fang R; Hu M
    Parasit Vectors; 2020 Jun; 13(1):326. PubMed ID: 32586367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling microRNAs through development of the parasitic nematode Haemonchus identifies nematode-specific miRNAs that suppress larval development.
    Marks ND; Winter AD; Gu HY; Maitland K; Gillan V; Ambroz M; Martinelli A; Laing R; MacLellan R; Towne J; Roberts B; Hanks E; Devaney E; Britton C
    Sci Rep; 2019 Nov; 9(1):17594. PubMed ID: 31772378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A TGF-β type II receptor that associates with developmental transition in Haemonchus contortus in vitro.
    He L; Gasser RB; Li T; Di W; Li F; Zhang H; Zhou C; Fang R; Hu M
    PLoS Negl Trop Dis; 2019 Dec; 13(12):e0007913. PubMed ID: 31790412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.