These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 3427072)
1. Site-directed mutagenesis reveals transition-state stabilization as a general catalytic mechanism for aminoacyl-tRNA synthetases. Borgford TJ; Gray TE; Brand NJ; Fersht AR Biochemistry; 1987 Nov; 26(23):7246-50. PubMed ID: 3427072 [TBL] [Abstract][Full Text] [Related]
2. The valyl-tRNA synthetase from Bacillus stearothermophilus has considerable sequence homology with the isoleucyl-tRNA synthetase from Escherichia coli. Borgford TJ; Brand NJ; Gray TE; Fersht AR Biochemistry; 1987 May; 26(9):2480-6. PubMed ID: 3300774 [TBL] [Abstract][Full Text] [Related]
3. Natural variation of tyrosyl-tRNA synthetase and comparison with engineered mutants. Jones MD; Lowe DM; Borgford T; Fersht AR Biochemistry; 1986 Apr; 25(8):1887-91. PubMed ID: 3011073 [TBL] [Abstract][Full Text] [Related]
4. Investigation of transition-state stabilization by residues histidine-45 and threonine-40 in the tyrosyl-tRNA synthetase. Leatherbarrow RJ; Fersht AR Biochemistry; 1987 Dec; 26(26):8524-8. PubMed ID: 3126804 [TBL] [Abstract][Full Text] [Related]
5. Internal thermodynamics of position 51 mutants and natural variants of tyrosyl-tRNA synthetase. Ho CK; Fersht AR Biochemistry; 1986 Apr; 25(8):1891-7. PubMed ID: 3518795 [TBL] [Abstract][Full Text] [Related]
6. Transition-state stabilization in the mechanism of tyrosyl-tRNA synthetase revealed by protein engineering. Leatherbarrow RJ; Fersht AR; Winter G Proc Natl Acad Sci U S A; 1985 Dec; 82(23):7840-4. PubMed ID: 3865201 [TBL] [Abstract][Full Text] [Related]
7. Correlating amino acid conservation with function in tyrosyl-tRNA synthetase. Xin Y; Li W; Dwyer DS; First EA J Mol Biol; 2000 Oct; 303(2):287-98. PubMed ID: 11023793 [TBL] [Abstract][Full Text] [Related]
8. Molecular cloning of the gene encoding the valyl-tRNA synthetase from Bacillus stearothermophilus. Brand NJ; Fersht AR Gene; 1986; 44(1):139-42. PubMed ID: 3770480 [TBL] [Abstract][Full Text] [Related]
9. Probing histidine-substrate interactions in tyrosyl-tRNA synthetase using asparagine and glutamine replacements. Lowe DM; Fersht AR; Wilkinson AJ; Carter P; Winter G Biochemistry; 1985 Sep; 24(19):5106-9. PubMed ID: 4074680 [TBL] [Abstract][Full Text] [Related]
10. Structure-activity relationships in engineered proteins: characterization of disruptive deletions in the alpha-ammonium group binding site of tyrosyl-tRNA synthetase. Lowe DM; Winter G; Fersht AR Biochemistry; 1987 Sep; 26(19):6038-43. PubMed ID: 3480006 [TBL] [Abstract][Full Text] [Related]
11. Yellow lupin (Lupinus luteus) aminoacyl-tRNA synthetases. Isolation and some properties of enzyme-bound valyl adenylate and seryl adenylate. Jakubowski H Biochim Biophys Acta; 1978 Dec; 521(2):584-96. PubMed ID: 32907 [TBL] [Abstract][Full Text] [Related]
12. Valyl-tRNA synthetase gene of Escherichia coli K12. Primary structure and homology within a family of aminoacyl-TRNA synthetases. Heck JD; Hatfield GW J Biol Chem; 1988 Jan; 263(2):868-77. PubMed ID: 3275660 [TBL] [Abstract][Full Text] [Related]
13. Involvement of threonine 234 in catalysis of tyrosyl adenylate formation by tyrosyl-tRNA synthetase. First EA; Fersht AR Biochemistry; 1993 Dec; 32(49):13644-50. PubMed ID: 8257697 [TBL] [Abstract][Full Text] [Related]
14. Site-directed mutagenesis as a probe of enzyme structure and catalysis: tyrosyl-tRNA synthetase cysteine-35 to glycine-35 mutation. Wilkinson AJ; Fersht AR; Blow DM; Winter G Biochemistry; 1983 Jul; 22(15):3581-6. PubMed ID: 6615786 [TBL] [Abstract][Full Text] [Related]
15. Catalytic activity of aminoacyl tRNA synthetases and its implications for the origin of life. I. Aminoacyl adenylate formation in tyrosyl tRNA synthetase. Sokalski WA; Shibata M; Barak D; Rein R J Mol Evol; 1991 Nov; 33(5):405-11. PubMed ID: 1960737 [TBL] [Abstract][Full Text] [Related]
16. Valyl-tRNA, isoleucyl-tRNA and tyrosyl-tRNA synthetase from baker's yeast. Substrate specificity with regard to ATP analogs and mechanism of the aminoacylation reaction. Freist W; von der Haar F; Faulhammer H; Cramer F Eur J Biochem; 1976 Jul; 66(3):493-7. PubMed ID: 782885 [TBL] [Abstract][Full Text] [Related]
17. Fine structure-activity analysis of mutations at position 51 of tyrosyl-tRNA synthetase. Fersht AR; Wilkinson AJ; Carter P; Winter G Biochemistry; 1985 Oct; 24(21):5858-61. PubMed ID: 3002425 [TBL] [Abstract][Full Text] [Related]
18. Dissection of the structure and activity of the tyrosyl-tRNA synthetase by site-directed mutagenesis. Fersht AR Biochemistry; 1987 Dec; 26(25):8031-7. PubMed ID: 3442641 [TBL] [Abstract][Full Text] [Related]
19. The plant aminoacyl-tRNA synthetases. 2'-DeoxyATP and ATP in reactions catalysed by yellow lupin aminoacyl-tRNA synthetases. Jakubowski H Acta Biochim Pol; 1980; 27(3-4):321-33. PubMed ID: 7269975 [TBL] [Abstract][Full Text] [Related]
20. Hydrolytic action of aminoacyl-tRNA synthetases from baker's yeast. "Chemical proofreading" of Thr-tRNA Val by valyl-tRNA synthetase studied with modified tRNA Val and amino acid analogues. Igloi GL; von der Haar F; Cramer F Biochemistry; 1977 Apr; 16(8):1696-702. PubMed ID: 322705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]