These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 3427081)

  • 1. Infrared studies of fully hydrated unsaturated phosphatidylserine bilayers. Effect of Li+ and Ca2+.
    Casal HL; Martin A; Mantsch HH; Paltauf F; Hauser H
    Biochemistry; 1987 Nov; 26(23):7395-401. PubMed ID: 3427081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared studies of fully hydrated saturated phosphatidylserine bilayers. Effect of Li+ and Ca2+.
    Casal HL; Mantsch HH; Hauser H
    Biochemistry; 1987 Jul; 26(14):4408-16. PubMed ID: 3663596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared and 31P-NMR studies of the effect of Li+ and Ca2+ on phosphatidylserines.
    Casal HL; Mantsch HH; Paltauf F; Hauser H
    Biochim Biophys Acta; 1987 Jun; 919(3):275-86. PubMed ID: 3593749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared and 31P-NMR studies of the interaction of Mg2+ with phosphatidylserines: effect of hydrocarbon chain unsaturation.
    Casal HL; Mantsch HH; Hauser H
    Biochim Biophys Acta; 1989 Jul; 982(2):228-36. PubMed ID: 2752025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared spectroscopic studies on the phosphatidylserine bilayer interacting with calcium ion: effect of cholesterol.
    Choi S; Ware W; Lauterbach SR; Phillips WM
    Biochemistry; 1991 Sep; 30(35):8563-8. PubMed ID: 1888723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+, Mg2+, Li+, Na+, and K+ distributions in the headgroup region of binary membranes of phosphatidylcholine and phosphatidylserine as seen by deuterium NMR.
    Roux M; Bloom M
    Biochemistry; 1990 Jul; 29(30):7077-89. PubMed ID: 2223761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of metal ions with phosphatidylserine bilayer membranes: effect of hydrocarbon chain unsaturation.
    Mattai J; Hauser H; Demel RA; Shipley GG
    Biochemistry; 1989 Mar; 28(5):2322-30. PubMed ID: 2541783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium binding by phosphatidylserine headgroups. Deuterium NMR study.
    Roux M; Bloom M
    Biophys J; 1991 Jul; 60(1):38-44. PubMed ID: 1883944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the interaction of saposin C with POPS and POPC phospholipids: a solid-state NMR spectroscopic study.
    Abu-Baker S; Qi X; Lorigan GA
    Biophys J; 2007 Nov; 93(10):3480-90. PubMed ID: 17704143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-pressure infrared study of phosphatidylserine bilayers and their interactions with the local anesthetic tetracaine.
    Auger M; Smith IC; Mantsch HH; Wong PT
    Biochemistry; 1990 Feb; 29(8):2008-15. PubMed ID: 2328235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of the antiplanar-antiplanar phosphate conformation of dilauroylphosphatidylcholine bilayers.
    Pidgeon C; Markovich RJ
    Biochim Biophys Acta; 1990 Nov; 1029(1):173-84. PubMed ID: 2223808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Cation Binding to Lipid Bilayers with Negatively Charged POPS by Effective Inclusion of Electronic Polarization.
    Melcr J; Ferreira TM; Jungwirth P; Ollila OHS
    J Chem Theory Comput; 2020 Jan; 16(1):738-748. PubMed ID: 31762275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the nature of calcium ion binding between phosphatidylserine lamellae.
    Feigenson GW
    Biochemistry; 1986 Sep; 25(19):5819-25. PubMed ID: 3778883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt.
    Petrache HI; Tristram-Nagle S; Gawrisch K; Harries D; Parsegian VA; Nagle JF
    Biophys J; 2004 Mar; 86(3):1574-86. PubMed ID: 14990484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallization of phosphatidylserine bilayers induced by lithium.
    Hauser H; Shipley GG
    J Biol Chem; 1981 Nov; 256(22):11377-80. PubMed ID: 6271743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cation-dependent segregation phenomena and phase behavior in model membrane systems containing phosphatidylserine: influence of cholesterol and acyl chain composition.
    Tilcock CP; Bally MB; Farren SB; Cullis PR; Gruner SM
    Biochemistry; 1984 Jun; 23(12):2696-703. PubMed ID: 6466608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Titration of the phase transition of phosphatidylserine bilayer membranes. Effects of pH, surface electrostatics, ion binding, and head-group hydration.
    Cevc G; Watts A; Marsh D
    Biochemistry; 1981 Aug; 20(17):4955-65. PubMed ID: 6271176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and thermotropic behavior of phosphatidylserine bilayer membranes.
    Hauser H; Paltauf F; Shipley GG
    Biochemistry; 1982 Mar; 21(5):1061-7. PubMed ID: 7074049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of the activation of protein kinase C alpha by different diacylglycerol isomers.
    Sánchez-Piñera P; Micol V; Corbalán-García S; Gómez-Fernández JC
    Biochem J; 1999 Feb; 337 ( Pt 3)(Pt 3):387-95. PubMed ID: 9895281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cisplatin interaction with phosphatidylserine bilayer studied by solid-state NMR spectroscopy.
    Jensen M; Bjerring M; Nielsen NC; Nerdal W
    J Biol Inorg Chem; 2010 Feb; 15(2):213-23. PubMed ID: 19768472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.