These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

605 related articles for article (PubMed ID: 34271007)

  • 1. Nuclear Protein Condensates and Their Properties in Regulation of Gene Expression.
    Li W; Jiang H
    J Mol Biol; 2022 Jan; 434(1):167151. PubMed ID: 34271007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Splicing regulation through biomolecular condensates and membraneless organelles.
    Giudice J; Jiang H
    Nat Rev Mol Cell Biol; 2024 Sep; 25(9):683-700. PubMed ID: 38773325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?
    Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO
    RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonspecific Interactions in Transcription Regulation and Organization of Transcriptional Condensates.
    Valyaeva AA; Sheval EV
    Biochemistry (Mosc); 2024 Apr; 89(4):688-700. PubMed ID: 38831505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates.
    Scholl D; Deniz AA
    J Mol Biol; 2022 Jan; 434(1):167348. PubMed ID: 34767801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Material Properties of Transcription Factor Condensates to Control Gene Expression in Mammalian Cells and Mice.
    Fischer AAM; Robertson HB; Kong D; Grimm MM; Grether J; Groth J; Baltes C; Fliegauf M; Lautenschläger F; Grimbacher B; Ye H; Helms V; Weber W
    Small; 2024 Sep; 20(38):e2311834. PubMed ID: 38573961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging insights into transcriptional condensates.
    Ryu K; Park G; Cho WK
    Exp Mol Med; 2024 Apr; 56(4):820-826. PubMed ID: 38658705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase separation in transcription factor dynamics and chromatin organization.
    Wagh K; Garcia DA; Upadhyaya A
    Curr Opin Struct Biol; 2021 Dec; 71():148-155. PubMed ID: 34303933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay of dynamic genome organization and biomolecular condensates.
    Chung YC; Tu LC
    Curr Opin Cell Biol; 2023 Dec; 85():102252. PubMed ID: 37806293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Condensate interfacial forces reposition DNA loci and probe chromatin viscoelasticity.
    Strom AR; Kim Y; Zhao H; Chang YC; Orlovsky ND; Košmrlj A; Storm C; Brangwynne CP
    Cell; 2024 Sep; 187(19):5282-5297.e20. PubMed ID: 39168125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic particle unbinding modulates growth dynamics and size of transcription factor condensates in living cells.
    Muñoz-Gil G; Romero-Aristizabal C; Mateos N; Campelo F; de Llobet Cucalon LI; Beato M; Lewenstein M; Garcia-Parajo MF; Torreno-Pina JA
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2200667119. PubMed ID: 35881789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPTing across condensates: SEC-mediated translocation of SPT complex from pausing condensates to elongation condensates.
    Rawat P; Sawarkar R
    EMBO Rep; 2023 Mar; 24(3):e56810. PubMed ID: 36762438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA in formation and regulation of transcriptional condensates.
    Sharp PA; Chakraborty AK; Henninger JE; Young RA
    RNA; 2022 Jan; 28(1):52-57. PubMed ID: 34772787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase separation in RNA biology.
    Lin Y; Fang X
    J Genet Genomics; 2021 Oct; 48(10):872-880. PubMed ID: 34371110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of promoter DNA and RNA Pol II machinery into transcriptionally active biomolecular condensates.
    Lewis BA; Das SK; Jha RK; Levens D
    Sci Adv; 2023 Oct; 9(42):eadi4565. PubMed ID: 37851801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. G-Quadruplexes in Nuclear Biomolecular Condensates.
    Pavlova I; Iudin M; Surdina A; Severov V; Varizhuk A
    Genes (Basel); 2023 May; 14(5):. PubMed ID: 37239436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding the genomic landscape of chromatin-associated biomolecular condensates.
    Yu Z; Wang Q; Zhang Q; Tian Y; Yan G; Zhu J; Zhu G; Zhang Y
    Nat Commun; 2024 Aug; 15(1):6952. PubMed ID: 39138204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-driven phase transitions in biomolecular condensates.
    Wadsworth GM; Srinivasan S; Lai LB; Datta M; Gopalan V; Banerjee PR
    Mol Cell; 2024 Oct; 84(19):3692-3705. PubMed ID: 39366355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. May the force be with you: Nuclear condensates function beyond transcription control: Potential nongenetic functions of nuclear condensates in physiological and pathological conditions.
    Negri ML; D'Annunzio S; Vitali G; Zippo A
    Bioessays; 2023 Oct; 45(10):e2300075. PubMed ID: 37530178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.