These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34271044)

  • 1. A tale of two tails: Self-assembling properties of A- and B-chain parts of insulin's highly amyloidogenic H-fragment.
    Dec R; Dzwolak W
    Int J Biol Macromol; 2021 Sep; 186():510-518. PubMed ID: 34271044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond amino acid sequence: disulfide bonds and the origins of the extreme amyloidogenic properties of insulin's H-fragment.
    Dec R; Koliński M; Dzwolak W
    FEBS J; 2019 Aug; 286(16):3194-3205. PubMed ID: 30980592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extremely Amyloidogenic Single-Chain Analogues of Insulin's H-Fragment: Structural Adaptability of an Amyloid Stretch.
    Dec R; Dzwolak W
    Langmuir; 2020 Oct; 36(41):12150-12159. PubMed ID: 32988199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forced amyloidogenic cooperativity of structurally incompatible peptide segments: Fibrillization behavior of highly aggregation-prone A-chain fragment of insulin coupled to all-L, and alternating L/D octaglutamates.
    Dec R; Okoń R; Puławski W; Wacławska M; Dzwolak W
    Int J Biol Macromol; 2022 Dec; 223(Pt A):362-369. PubMed ID: 36368353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid self-association of highly amyloidogenic H-fragments of insulin: Experiment and molecular dynamics simulations.
    Dec R; Koliński M; Kouza M; Dzwolak W
    Int J Biol Macromol; 2020 May; 150():894-903. PubMed ID: 32070740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly amyloidogenic two-chain peptide fragments are released upon partial digestion of insulin with pepsin.
    Piejko M; Dec R; Babenko V; Hoang A; Szewczyk M; Mak P; Dzwolak W
    J Biol Chem; 2015 Mar; 290(10):5947-58. PubMed ID: 25586185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale Modeling of Amyloid Fibrils Formed by Aggregating Peptides Derived from the Amyloidogenic Fragment of the A-Chain of Insulin.
    Koliński M; Dec R; Dzwolak W
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clues to the Design of Aggregation-Resistant Insulin from Proline Scanning of Highly Amyloidogenic Peptides Derived from the N-Terminal Segment of the A-Chain.
    Puławski W; Dec R; Dzwolak W
    Mol Pharm; 2024 Apr; 21(4):2025-2033. PubMed ID: 38525800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective and stoichiometric incorporation of ATP by self-assembling amyloid fibrils.
    Dec R; Puławski W; Dzwolak W
    J Mater Chem B; 2021 Oct; 9(41):8626-8630. PubMed ID: 34622264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembly of Insulin-Derived Chimeric Peptides into Two-Component Amyloid Fibrils: The Role of Coulombic Interactions.
    Fortunka M; Dec R; Puławski W; Guza M; Dzwolak W
    J Phys Chem B; 2023 Aug; 127(30):6597-6607. PubMed ID: 37492019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independent heterologous fibrillation of insulin and its B-chain peptide.
    Hong DP; Fink AL
    Biochemistry; 2005 Dec; 44(50):16701-9. PubMed ID: 16342960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleation-dependent Aggregation Kinetics of Yeast Sup35 Fragment GNNQQNY.
    Burra G; Maina MB; Serpell LC; Thakur AK
    J Mol Biol; 2021 Feb; 433(3):166732. PubMed ID: 33279578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual effect of non-ionic detergent Triton X-100 on insulin amyloid formation.
    Siposova K; Sedlak E; Kozar T; Nemergut M; Musatov A
    Colloids Surf B Biointerfaces; 2019 Jan; 173():709-718. PubMed ID: 30384267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibrillation of human insulin A and B chains.
    Hong DP; Ahmad A; Fink AL
    Biochemistry; 2006 Aug; 45(30):9342-53. PubMed ID: 16866381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual Quasi-2D Intermediates as Building Blocks for Plausible Structural Models of Amyloid Fibrils from Proteins with Complex Topologies: A Case Study of Insulin.
    Puławski W; Dzwolak W
    Langmuir; 2022 Jun; 38(22):7024-7034. PubMed ID: 35617668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalently attached fatty acyl chains alter the aggregation behavior of an amyloidogenic peptide derived from human β(2)-microglobulin.
    Rawat A; Nagaraj R
    J Pept Sci; 2013 Dec; 19(12):770-83. PubMed ID: 24243599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural model of amyloid fibrils for amyloidogenic peptide from Bgl2p-glucantransferase of S. cerevisiae cell wall and its modifying analog. New morphology of amyloid fibrils.
    Selivanova OM; Glyakina AV; Gorbunova EY; Mustaeva LG; Suvorina MY; Grigorashvili EI; Nikulin AD; Dovidchenko NV; Rekstina VV; Kalebina TS; Surin AK; Galzitskaya OV
    Biochim Biophys Acta; 2016 Nov; 1864(11):1489-99. PubMed ID: 27500912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The quest for the shortest fragments of A (13-19) and B (12-17) responsible for the aggregation of human insulin.
    Swiontek M; Rozniakowski K; Fraczyk J; Lipinski W; Galecki K; Wysocki S; R Dupont BG; Kaminski ZJ; Kolesinska B
    Nanomedicine (Lond); 2016 Aug; 11(16):2083-101. PubMed ID: 27463367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of electrostatics on aggregation of prion protein Sup35 peptide.
    Portillo AM; Krasnoslobodtsev AV; Lyubchenko YL
    J Phys Condens Matter; 2012 Apr; 24(16):164205. PubMed ID: 22466073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-Responsive Mechanistic Switch Regulates the Formation of Dendritic and Fibrillar Nanostructures of a Functional Amyloid.
    Dogra P; Bhattacharya M; Mukhopadhyay S
    J Phys Chem B; 2017 Jan; 121(2):412-419. PubMed ID: 28005369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.