BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 3427114)

  • 1. Observing heme doming in myoglobin with femtosecond X-ray absorption spectroscopy.
    Levantino M; Lemke HT; Schirò G; Glownia M; Cupane A; Cammarata M
    Struct Dyn; 2015 Jul; 2(4):041713. PubMed ID: 26798812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplays of electron and nuclear motions along CO dissociation trajectory in myoglobin revealed by ultrafast X-rays and quantum dynamics calculations.
    Shelby ML; Wildman A; Hayes D; Mara MW; Lestrange PJ; Cammarata M; Balducci L; Artamonov M; Lemke HT; Zhu D; Seideman T; Hoffman BM; Li X; Chen LX
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33782122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin.
    Ferrante C; Pontecorvo E; Cerullo G; Vos MH; Scopigno T
    Nat Chem; 2016 Dec; 8(12):1137-1143. PubMed ID: 27874865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into Protein Structure and Dynamics by Ultraviolet and Visible Resonance Raman Spectroscopy.
    López-Peña I; Leigh BS; Schlamadinger DE; Kim JE
    Biochemistry; 2015 Aug; 54(31):4770-83. PubMed ID: 26219819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic model of primary energy transfer and trapping in photosynthetic membranes.
    Pullerits T; Freiberg A
    Biophys J; 1992 Oct; 63(4):879-96. PubMed ID: 19431849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subpicosecond oxygen trapping in the heme pocket of the oxygen sensor FixL observed by time-resolved resonance Raman spectroscopy.
    Kruglik SG; Jasaitis A; Hola K; Yamashita T; Liebl U; Martin JL; Vos MH
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7408-13. PubMed ID: 17446273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman Structural Evidence that the Cis-to-Trans Isomerization in Rhodopsin Occurs in Femtoseconds.
    Kim JE; McCamant DW; Zhu L; Mathies RA
    J Phys Chem B; 2001 Feb; 105(6):1240-9. PubMed ID: 16755302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved visible and infrared study of the cyano complexes of myoglobin and of hemoglobin I from Lucina pectinata.
    Helbing J; Bonacina L; Pietri R; Bredenbeck J; Hamm P; van Mourik F; Chaussard F; Gonzalez-Gonzalez A; Chergui M; Ramos-Alvarez C; Ruiz C; López-Garriga J
    Biophys J; 2004 Sep; 87(3):1881-91. PubMed ID: 15345566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heme photolysis occurs by ultrafast excited state metal-to-ring charge transfer.
    Franzen S; Kiger L; Poyart C; Martin JL
    Biophys J; 2001 May; 80(5):2372-85. PubMed ID: 11325737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron-histidine resonance Raman band of deoxyheme proteins: effects of anharmonic coupling and glass-liquid phase transition.
    Bitler A; Stavrov SS
    Biophys J; 1999 Nov; 77(5):2764-76. PubMed ID: 10545375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared spectra of Scapharca homodimeric hemoglobin: characterization of the deoxy and photodissociated derivatives.
    Huang J; Leone M; Boffi A; Friedman JM; Chiancone E
    Biophys J; 1996 Jun; 70(6):2924-9. PubMed ID: 8744330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observations of ligand dynamics in hemoglobin by subpicosecond infrared spectroscopy.
    Anfinrud PA; Han C; Hochstrasser RM
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8387-91. PubMed ID: 2554314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subpicosecond resonance Raman spectroscopy of carbonmonoxy- and oxyhemoglobin.
    van den Berg R; el-Sayed MA
    Biophys J; 1990 Oct; 58(4):931-7. PubMed ID: 2248996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved Raman spectroscopy with subpicosecond resolution: vibrational cooling and delocalization of strain energy in photodissociated (carbonmonoxy)hemoglobin.
    Petrich JW; Martin JL; Houde D; Poyart C; Orszag A
    Biochemistry; 1987 Dec; 26(24):7914-23. PubMed ID: 3427114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of solvent viscosity on the heme-pocket dynamics of photolyzed (carbonmonoxy)hemoglobin.
    Findsen EW; Friedman JM; Ondrias MR
    Biochemistry; 1988 Nov; 27(24):8719-24. PubMed ID: 3242601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heme-CO religation in photolyzed hemoglobin: a time-resolved Raman study of the Fe-CO stretching mode.
    Schneebeck MC; Vigil LE; Friedman JM; Chavez MD; Ondrias MR
    Biochemistry; 1993 Feb; 32(5):1318-23. PubMed ID: 8448140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of the local heme environment of (carbonmonoxy)hemoglobin to protein dehydration.
    Findsen EW; Simons P; Ondrias MR
    Biochemistry; 1986 Dec; 25(24):7912-7. PubMed ID: 3801449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient and time-resolved optical studies of photolyzed carbonmonoxy hemoglobin and myoglobin.
    Findsen EW; Ondrias MR
    Photochem Photobiol; 1990 Jun; 51(6):741-8. PubMed ID: 2195562
    [No Abstract]   [Full Text] [Related]  

  • 19. Time-resolved resonance Raman spectroscopy as probe of structure, dynamics, and reactivity in hemoglobin.
    Friedman JM
    Methods Enzymol; 1994; 232():205-31. PubMed ID: 8057861
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.