These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 3427114)

  • 21. Picosecond resonance Raman evidence for unrelaxed heme in the (carbonmonoxy)myoglobin photoproduct.
    Dasgupta S; Spiro TG; Johnson CK; Dalickas GA; Hochstrasser RM
    Biochemistry; 1985 Sep; 24(20):5295-7. PubMed ID: 4074696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Geminate recombination of O2 and hemoglobin.
    Chernoff DA; Hochstrasser RM; Steele AW
    Proc Natl Acad Sci U S A; 1980 Oct; 77(10):5606-10. PubMed ID: 6932659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The structural bases for the unique ligand binding properties of Glycera dibranchiata hemoglobins. A resonance Raman study.
    Carson SD; Constantinidis I; Mintorovitch J; Satterlee JD; Ondrias MR
    J Biol Chem; 1986 Feb; 261(5):2246-55. PubMed ID: 3944134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resonance Raman characterization of the 7-ns photoproduct of (carbonmonoxy)hemoglobin: implications for hemoglobin dynamics.
    Dasgupta S; Spiro TG
    Biochemistry; 1986 Oct; 25(20):5941-8. PubMed ID: 3790496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Speed of intersubunit communication in proteins.
    Jones CM; Ansari A; Henry ER; Christoph GW; Hofrichter J; Eaton WA
    Biochemistry; 1992 Jul; 31(29):6692-702. PubMed ID: 1637808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-resolved resonance Raman spectroscopy as probe of structure, dynamics, and reactivity in hemoglobin.
    Friedman JM
    Methods Enzymol; 1994; 232():205-31. PubMed ID: 8057861
    [No Abstract]   [Full Text] [Related]  

  • 27. Hemoglobin site-mutants reveal dynamical role of interhelical H-bonds in the allosteric pathway: time-resolved UV resonance Raman evidence for intra-dimer coupling.
    Balakrishnan G; Tsai CH; Wu Q; Case MA; Pevsner A; McLendon GL; Ho C; Spiro TG
    J Mol Biol; 2004 Jul; 340(4):857-68. PubMed ID: 15223326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time-resolved optical spectroscopy and structural dynamics following photodissociation of carbonmonoxyhemoglobin.
    Murray LP; Hofrichter J; Henry ER; Eaton WA
    Biophys Chem; 1988 Feb; 29(1-2):63-76. PubMed ID: 3282562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subpicosecond oxygen trapping in the heme pocket of the oxygen sensor FixL observed by time-resolved resonance Raman spectroscopy.
    Kruglik SG; Jasaitis A; Hola K; Yamashita T; Liebl U; Martin JL; Vos MH
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7408-13. PubMed ID: 17446273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Linking conformation change to hemoglobin activation via chain-selective time-resolved resonance Raman spectroscopy of protoheme/mesoheme hybrids.
    Balakrishnan G; Ibrahim M; Mak PJ; Hata J; Kincaid JR; Spiro TG
    J Biol Inorg Chem; 2009 Jun; 14(5):741-50. PubMed ID: 19288145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectroscopic and functional characterization of T state hemoglobin conformations encapsulated in silica gels.
    Samuni U; Dantsker D; Juszczak LJ; Bettati S; Ronda L; Mozzarelli A; Friedman JM
    Biochemistry; 2004 Nov; 43(43):13674-82. PubMed ID: 15504030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrafast heme dynamics in ferrous versus ferric cytochrome c studied by time-resolved resonance Raman and transient absorption spectroscopy.
    Negrerie M; Cianetti S; Vos MH; Martin JL; Kruglik SG
    J Phys Chem B; 2006 Jun; 110(25):12766-81. PubMed ID: 16800612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heme photolysis occurs by ultrafast excited state metal-to-ring charge transfer.
    Franzen S; Kiger L; Poyart C; Martin JL
    Biophys J; 2001 May; 80(5):2372-85. PubMed ID: 11325737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Picosecond time-resolved resonance Raman studies of hemoglobin: implications for reactivity.
    Findsen EW; Friedman JM; Ondrias MR; Simon SR
    Science; 1985 Aug; 229(4714):661-5. PubMed ID: 4023704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of buffer salt on the geminate recombination of photodissociated carboxyhemoglobin and its isolated subunits.
    Fontaine MP; Lindqvist L
    Biochimie; 1988 Dec; 70(12):1781-4. PubMed ID: 3150683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteins in motion: resonance Raman spectroscopy as a probe of functional intermediates.
    Samuni U; Friedman JM
    Methods Mol Biol; 2005; 305():287-300. PubMed ID: 15940003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-frequency resonance Raman spectroscopy of the deoxyhaemoglobin transient of photolysed carboxyhaemoglobin.
    Irwin MJ; Atkinson GH
    Nature; 1981 Sep; 293(5830):317-8. PubMed ID: 7278990
    [No Abstract]   [Full Text] [Related]  

  • 38. Time-resolved absorption and UV resonance Raman spectra reveal stepwise formation of T quaternary contacts in the allosteric pathway of hemoglobin.
    Balakrishnan G; Case MA; Pevsner A; Zhao X; Tengroth C; McLendon GL; Spiro TG
    J Mol Biol; 2004 Jul; 340(4):843-56. PubMed ID: 15223325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple geminate ligand recombinations in human hemoglobin.
    Esquerra RM; Goldbeck RA; Reaney SH; Batchelder AM; Wen Y; Lewis JW; Kliger DS
    Biophys J; 2000 Jun; 78(6):3227-39. PubMed ID: 10827999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metastable species of hemoglobin: room temperature transients and cryogenically trapped intermediates.
    Ondrias MR; Friedman JM; Rousseau DL
    Science; 1983 May; 220(4597):615-7. PubMed ID: 6836305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.