BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34271239)

  • 1. Fluorescence resonance energy transfer-based aptasensor for sensitive detection of kanamycin in food.
    Zhang Y; Liu R; Hassan MM; Li H; Ouyang Q; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 262():120147. PubMed ID: 34271239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer.
    Li H; Sun DE; Liu Y; Liu Z
    Biosens Bioelectron; 2014 May; 55():149-56. PubMed ID: 24373954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upconversion nanoparticles-based FRET system for sensitive detection of Staphylococcus aureus.
    Ouyang Q; Yang Y; Ali S; Wang L; Li H; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 255():119734. PubMed ID: 33812237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection.
    Jin B; Wang S; Lin M; Jin Y; Zhang S; Cui X; Gong Y; Li A; Xu F; Lu TJ
    Biosens Bioelectron; 2017 Apr; 90():525-533. PubMed ID: 27825886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A competitive colorimetric aptasensor for simple and sensitive detection of kanamycin based on terminal deoxynucleotidyl transferase-mediated signal amplification strategy.
    Zhao T; Chen Q; Wen Y; Bian X; Tao Q; Liu G; Yan J
    Food Chem; 2022 May; 377():132072. PubMed ID: 35008020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy.
    Wu S; Duan N; Ma X; Xia Y; Wang H; Wang Z
    Anal Chim Acta; 2013 Jun; 782():59-66. PubMed ID: 23708285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Three-in-one" nanohybrids as synergistic nanozymes assisted with exonuclease I amplification to enhance colorimetric aptasensor for ultrasensitive detection of kanamycin.
    Li G; Liu S; Huo Y; Zhou H; Li S; Lin X; Kang W; Li S; Gao Z
    Anal Chim Acta; 2022 Aug; 1222():340178. PubMed ID: 35934425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-sensitive detection of malathion residues using FRET-based upconversion fluorescence sensor in food.
    Chen Q; Sheng R; Wang P; Ouyang Q; Wang A; Ali S; Zareef M; Hassan MM
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Nov; 241():118654. PubMed ID: 32659702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins.
    Wu S; Duan N; Ma X; Xia Y; Wang H; Wang Z; Zhang Q
    Anal Chem; 2012 Jul; 84(14):6263-70. PubMed ID: 22816786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer.
    Wang Y; Wei Z; Luo X; Wan Q; Qiu R; Wang S
    Talanta; 2019 Apr; 195():33-39. PubMed ID: 30625551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turn-On Fluoresence Sensor for Hg
    Liu Y; Ouyang Q; Li H; Chen M; Zhang Z; Chen Q
    J Agric Food Chem; 2018 Jun; 66(24):6188-6195. PubMed ID: 29847117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH2-NaYF4: Yb, Ho@SiO2 and Au nanoparticles.
    Hu W; Chen Q; Li H; Ouyang Q; Zhao J
    Biosens Bioelectron; 2016 Jun; 80():398-404. PubMed ID: 26874106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and sensitive detection of diazinon in food based on the FRET between rare-earth doped upconversion nanoparticles and graphene oxide.
    Rong Y; Li H; Ouyang Q; Ali S; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Oct; 239():118500. PubMed ID: 32470816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fluorescence aptasensor for the sensitive detection of T-2 toxin based on FRET by adjusting the surface electric potentials of UCNPs and MIL-101.
    Zhao X; Wang Y; Li J; Huo B; Huang H; Bai J; Peng Y; Li S; Han D; Ren S; Wang J; Gao Z
    Anal Chim Acta; 2021 May; 1160():338450. PubMed ID: 33894966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aptamer-aptamer linkage based aptasensor for highly enhanced detection of small molecules.
    Nguyen VT; Lee BH; Kim SH; Gu MB
    Biotechnol J; 2016 Jun; 11(6):843-9. PubMed ID: 27221154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline.
    Zhang H; Fang C; Wu S; Duan N; Wang Z
    Anal Biochem; 2015 Nov; 489():44-9. PubMed ID: 26302361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO
    Ouyang Q; Wang L; Ahmad W; Rong Y; Li H; Hu Y; Chen Q
    Food Chem; 2021 Jul; 349():129157. PubMed ID: 33578248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aptamer-modified sensitive nanobiosensors for the specific detection of antibiotics.
    Zhang Y; Duan B; Bao Q; Yang T; Wei T; Wang J; Mao C; Zhang C; Yang M
    J Mater Chem B; 2020 Sep; 8(37):8607-8613. PubMed ID: 32820795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A label-free and carbon dots based fluorescent aptasensor for the detection of kanamycin in milk.
    Wang J; Lu T; Hu Y; Wang X; Wu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117651. PubMed ID: 31629980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive electrochemiluminescence aptasensor based on dual-signal amplification strategy for kanamycin detection.
    Cheng S; Zhang H; Huang J; Xu R; Sun X; Guo Y
    Sci Total Environ; 2020 Oct; 737():139785. PubMed ID: 32516665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.