These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 3427140)

  • 1. Adhesive colonization of biomaterials and antibiotic resistance.
    Gristina AG; Hobgood CD; Webb LX; Myrvik QN
    Biomaterials; 1987 Nov; 8(6):423-6. PubMed ID: 3427140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibiotic resistance of biomaterial-adherent coagulase-negative and coagulase-positive staphylococci.
    Naylor PT; Myrvik QN; Gristina A
    Clin Orthop Relat Res; 1990 Dec; (261):126-33. PubMed ID: 2173986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ica-expression and gentamicin susceptibility of Staphylococcus epidermidis biofilm on orthopedic implant biomaterials.
    Nuryastuti T; Krom BP; Aman AT; Busscher HJ; van der Mei HC
    J Biomed Mater Res A; 2011 Feb; 96(2):365-71. PubMed ID: 21171156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of bacterial adhesion by tobramycin-impregnated PMMA bone cement.
    Oga M; Arizono T; Sugioka Y
    Acta Orthop Scand; 1992 Jun; 63(3):301-4. PubMed ID: 1609595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adhesion to a polymeric biomaterial affects the antibiotic resistance of Staphylococcus epidermidis.
    Arciola CR; Donati ME; Montanaro L
    New Microbiol; 2001 Jan; 24(1):63-8. PubMed ID: 11209844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The inhibition of bacterial adhesion to a tobramycin-impregnated polymethylmethacrylate substratum.
    Oga M; Arizono T; Sugioka Y; Naylor PT; Myrvik QN; Gristina AG
    J Long Term Eff Med Implants; 1992; 1(4):321-8. PubMed ID: 10171117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of Bacterial Attachment on Surfaces by Immobilization of Tobramycin-Loaded Liposomes.
    Mourtas S; Diamanti G; Foka A; Dracopoulos V; Klepetsanis P; Stamouli V; Spiliopoulou I; Antimisiaris SG
    J Biomed Nanotechnol; 2015 Dec; 11(12):2186-96. PubMed ID: 26510312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Investigation of the surface properties of Staphylococcus epidermidis strains isolated from biomaterials].
    Sudağidan M; Erdem I; Cavuşoğlu C; Ciftçloğlu M
    Mikrobiyol Bul; 2010 Jan; 44(1):93-103. PubMed ID: 20455404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro.
    MacKintosh EE; Patel JD; Marchant RE; Anderson JM
    J Biomed Mater Res A; 2006 Sep; 78(4):836-42. PubMed ID: 16817192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro biofilm distribution on the intraocular lens surface of different biomaterials.
    Mazoteras P; Casaroli-Marano RP
    J Cataract Refract Surg; 2015 Sep; 41(9):1980-8. PubMed ID: 26603407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistence of bacteria on antibiotic loaded acrylic depots. A reason for caution.
    Kendall RW; Duncan CP; Smith JA; Ngui-Yen JH
    Clin Orthop Relat Res; 1996 Aug; (329):273-80. PubMed ID: 8769462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased resistance of bacteria after adherence to polymethyl methacrylate. An in vitro study.
    Arizono T; Oga M; Sugioka Y
    Acta Orthop Scand; 1992 Dec; 63(6):661-4. PubMed ID: 1471518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adherence and kinetics of biofilm formation of Staphylococcus epidermidis to different types of intraocular lenses under dynamic flow conditions.
    Baillif S; Ecochard R; Casoli E; Freney J; Burillon C; Kodjikian L
    J Cataract Refract Surg; 2008 Jan; 34(1):153-8. PubMed ID: 18165096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-adhesion and antiproliferative cellulose triacetate membrane for prevention of biomaterial-centred infections associated with Staphylococcus epidermidis.
    Extremina CI; Fonseca AF; Granja PL; Fonseca AP
    Int J Antimicrob Agents; 2010 Feb; 35(2):164-8. PubMed ID: 19942411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EDTA as a potential agent preventing formation of Staphylococcus epidermidis biofilm on polichloride vinyl biomaterials.
    Juda M; Paprota K; Jałoza D; Malm A; Rybojad P; Goździuk K
    Ann Agric Environ Med; 2008; 15(2):237-41. PubMed ID: 19118444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of biofilm culture upon the susceptibility of Staphylococcus epidermidis to tobramycin.
    Duguid IG; Evans E; Brown MR; Gilbert P
    J Antimicrob Chemother; 1992 Dec; 30(6):803-10. PubMed ID: 1289354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimal attachment killing (MAK): a versatile method for susceptibility testing of attached biofilm-positive and -negative Staphylococcus epidermidis.
    Knobloch JK; Von Osten H; Horstkotte MA; Rohde H; Mack D
    Med Microbiol Immunol; 2002 Oct; 191(2):107-14. PubMed ID: 12410350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surgical biomaterials and differential colonization by Staphylococcus epidermidis.
    Oga M; Sugioka Y; Hobgood CD; Gristina AG; Myrvik QN
    Biomaterials; 1988 May; 9(3):285-9. PubMed ID: 3408804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adherence of Staphylococcus epidermidis to biomaterials is augmented by PIA.
    Olson ME; Garvin KL; Fey PD; Rupp ME
    Clin Orthop Relat Res; 2006 Oct; 451():21-4. PubMed ID: 16906069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion.
    Yoda I; Koseki H; Tomita M; Shida T; Horiuchi H; Sakoda H; Osaki M
    BMC Microbiol; 2014 Sep; 14():234. PubMed ID: 25179448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.