These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 34271649)

  • 1. No quantum speedup with Grover-Rudolph state preparation for quantum Monte Carlo integration.
    Herbert S
    Phys Rev E; 2021 Jun; 103(6-1):063302. PubMed ID: 34271649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum speedup of Monte Carlo methods.
    Montanaro A
    Proc Math Phys Eng Sci; 2015 Sep; 471(2181):20150301. PubMed ID: 26528079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gamma distribution model to provide a direct assessment of the overall quality of quantum Monte Carlo-generated electron distributions.
    Coles B; Vrbik P; Giacometti RD; Rothstein SM
    J Phys Chem A; 2008 Mar; 112(10):2012-7. PubMed ID: 18251523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete 3-Qubit Grover search on a programmable quantum computer.
    Figgatt C; Maslov D; Landsman KA; Linke NM; Debnath S; Monroe C
    Nat Commun; 2017 Dec; 8(1):1918. PubMed ID: 29203858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed-Loop Quantum Monte Carlo Method for Retarded Interactions.
    Weber M; Assaad FF; Hohenadler M
    Phys Rev Lett; 2017 Sep; 119(9):097401. PubMed ID: 28949554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum algorithm for exact Monte Carlo sampling.
    Destainville N; Georgeot B; Giraud O
    Phys Rev Lett; 2010 Jun; 104(25):250502. PubMed ID: 20867354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. No ψ-epistemic model can fully explain the indistinguishability of quantum states.
    Barrett J; Cavalcanti EG; Lal R; Maroney OJ
    Phys Rev Lett; 2014 Jun; 112(25):250403. PubMed ID: 25014796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitigating spikes in fermion Monte Carlo methods by reshuffling measurements.
    Ulybyshev M; Assaad F
    Phys Rev E; 2022 Aug; 106(2-2):025318. PubMed ID: 36109941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valence-bond quantum Monte Carlo algorithms defined on trees.
    Deschner A; Sørensen ES
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033304. PubMed ID: 25314561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitations in photoactive molecules from quantum Monte Carlo.
    Schautz F; Buda F; Filippi C
    J Chem Phys; 2004 Sep; 121(12):5836-44. PubMed ID: 15367010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Quantum Tunneling through Quantum Monte Carlo Simulations.
    Isakov SV; Mazzola G; Smelyanskiy VN; Jiang Z; Boixo S; Neven H; Troyer M
    Phys Rev Lett; 2016 Oct; 117(18):180402. PubMed ID: 27835027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Typicality in ensembles of quantum states: Monte Carlo sampling versus analytical approximations.
    Fresch B; Moro GJ
    J Phys Chem A; 2009 Dec; 113(52):14502-13. PubMed ID: 20028164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation energy of the water dimer from quantum Monte Carlo calculations.
    Gurtubay IG; Needs RJ
    J Chem Phys; 2007 Sep; 127(12):124306. PubMed ID: 17902902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets.
    King AD; Raymond J; Lanting T; Isakov SV; Mohseni M; Poulin-Lamarre G; Ejtemaee S; Bernoudy W; Ozfidan I; Smirnov AY; Reis M; Altomare F; Babcock M; Baron C; Berkley AJ; Boothby K; Bunyk PI; Christiani H; Enderud C; Evert B; Harris R; Hoskinson E; Huang S; Jooya K; Khodabandelou A; Ladizinsky N; Li R; Lott PA; MacDonald AJR; Marsden D; Marsden G; Medina T; Molavi R; Neufeld R; Norouzpour M; Oh T; Pavlov I; Perminov I; Prescott T; Rich C; Sato Y; Sheldan B; Sterling G; Swenson LJ; Tsai N; Volkmann MH; Whittaker JD; Wilkinson W; Yao J; Neven H; Hilton JP; Ladizinsky E; Johnson MW; Amin MH
    Nat Commun; 2021 Feb; 12(1):1113. PubMed ID: 33602927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Puzzle of magnetic moments of Ni clusters revisited using quantum Monte Carlo method.
    Lee HW; Chang CM; Hsing CR
    J Chem Phys; 2017 Feb; 146(8):084313. PubMed ID: 28249444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Monte Carlo method using a stochastic Poisson solver.
    Das D; Martin RM; Kalos MH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046702. PubMed ID: 16711950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods for calculating forces within quantum Monte Carlo simulations.
    Badinski A; Haynes PD; Trail JR; Needs RJ
    J Phys Condens Matter; 2010 Feb; 22(7):074202. PubMed ID: 21386380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum versus classical annealing of Ising spin glasses.
    Heim B; Rønnow TF; Isakov SV; Troyer M
    Science; 2015 Apr; 348(6231):215-7. PubMed ID: 25765071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Monte Carlo with density matrix: potential energy curve derived properties.
    Bonfim VS; Borges NM; Martins JB; Gargano R; Politi JR
    J Mol Model; 2017 Apr; 23(4):104. PubMed ID: 28271286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale.
    Okada S; Murakami K; Incerti S; Amako K; Sasaki T
    Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.