These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34271729)

  • 1. Generalized source term multiflux method coupled with Runge-Kutta ray tracing technique for arbitrary radiative intensity of graded-index media.
    Wei L; Qi H; Li G; Zhang W
    Phys Rev E; 2021 Jun; 103(6-1):063301. PubMed ID: 34271729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiative transfer equation for predicting light propagation in biological media: comparison of a modified finite volume method, the Monte Carlo technique, and an exact analytical solution.
    Asllanaj F; Contassot-Vivier S; Liemert A; Kienle A
    J Biomed Opt; 2014 Jan; 19(1):15002. PubMed ID: 24390371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image distortion correction method in a nonuniform temperature field by using Runge-Kutta ray tracing.
    Wu J; Li X; Xu H; Xu J; Yu Z
    J Opt Soc Am A Opt Image Sci Vis; 2019 Oct; 36(10):1795-1800. PubMed ID: 31674446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical determination of continuous ray tracing: the four-component method.
    Puchalski J
    Appl Opt; 1994 Apr; 33(10):1900-6. PubMed ID: 20885524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symplectic ray tracing based on Hamiltonian optics in gradient-index media.
    Ohno H
    J Opt Soc Am A Opt Image Sci Vis; 2020 Mar; 37(3):411-416. PubMed ID: 32118924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometrical effect of graded index on the transport of polarized lights.
    Shao J; Zhu K; Shi G; Huang Y
    Opt Lett; 2021 Aug; 46(16):3981-3984. PubMed ID: 34388790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized lattice Boltzmann method for radiative transfer problem in slab and irregular graded-index media.
    Ymeli GL; Wang CH
    Phys Rev E; 2023 Jan; 107(1-2):015302. PubMed ID: 36797882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modified Runge-Kutta method with phase-lag of order infinity for the numerical solution of the Schrödinger equation and related problems.
    Simos TE; Aguiar JV
    Comput Chem; 2001 May; 25(3):275-81. PubMed ID: 11339410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of optical parameter fields in graded refractive index media based on laser beam deflection and attenuation measurement.
    Wei L; Li G; Guo X; Sun S
    Appl Opt; 2022 Nov; 61(32):9370-9378. PubMed ID: 36606883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation Study on Effects of Order and Step Size of Runge-Kutta Methods that Solve Contagious Disease and Tumor Models.
    Wang Z; Wang Q; Klinke DJ
    J Comput Sci Syst Biol; 2016 Sep; 9(5):163-172. PubMed ID: 28220053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic Bayesian Runge-Kutta method for dengue dynamic mapping.
    Mukhsar ; Wibawa GNA; Tenriawaru A; Usman I; Firihu MZ; Variani VI; Mansur ABF; Basori AH
    MethodsX; 2023; 10():101979. PubMed ID: 36619373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-dimensional transient radiative transfer by lattice Boltzmann method.
    Zhang Y; Yi H; Tan H
    Opt Express; 2013 Oct; 21(21):24532-49. PubMed ID: 24150298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of generalized Langevin equation with arbitrary correlated noise.
    Lü K; Bao JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):067701. PubMed ID: 16486105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exact equations to design aplanatic sequential optical systems.
    González-Acuña RG
    Appl Opt; 2021 Oct; 60(30):9263-9268. PubMed ID: 34807061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of transient radiative transfer induced by an incident short-pulsed laser in a graded-index medium with Fresnel boundaries.
    Wang CH; Zhang Y; Yi HL; Xie M
    Appl Opt; 2017 Mar; 56(7):1861-1871. PubMed ID: 28248382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates.
    Hejranfar K; Saadat MH; Taheri S
    Phys Rev E; 2017 Feb; 95(2-1):023314. PubMed ID: 28297984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modified phase-fitted and amplification-fitted Runge-Kutta-Nyström method for the numerical solution of the radial Schrödinger equation.
    Papadopoulos DF; Anastassi ZA; Simos TE
    J Mol Model; 2010 Aug; 16(8):1339-46. PubMed ID: 20127396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ray tracing method in phase space for two-dimensional optical systems.
    Filosa C; Ten Thije Boonkkamp JH; IJzerman WL
    Appl Opt; 2016 May; 55(13):3599-606. PubMed ID: 27140377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. k-domain method for the fast calculation of electromagnetic fields propagating in graded-index media.
    Zhong H; Zhang S; Baladron-Zorita O; Shi R; Hellmann C; Wyrowski F
    Opt Express; 2020 Apr; 28(8):11074-11084. PubMed ID: 32403626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods.
    Gómez Pueyo A; Marques MAL; Rubio A; Castro A
    J Chem Theory Comput; 2018 Jun; 14(6):3040-3052. PubMed ID: 29672048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.