These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 34271734)
1. Monte Carlo examination of first-order phase transitions in a system with many independent order parameters: Three-dimensional Ashkin-Teller model. Musiał G; Jeziorek-Knioła D; Wojtkowiak Z Phys Rev E; 2021 Jun; 103(6-1):062124. PubMed ID: 34271734 [TBL] [Abstract][Full Text] [Related]
2. Verification of Ising phase transitions in the three-dimensional Ashkin-Teller model using Monte Carlo simulations. Szukowski G; Kamieniarz G; Musiał G Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031124. PubMed ID: 18517346 [TBL] [Abstract][Full Text] [Related]
3. Ashkin-Teller criticality and weak first-order behavior of the phase transition to a fourfold degenerate state in two-dimensional frustrated Ising antiferromagnets. Liu RM; Zhuo WZ; Chen J; Qin MH; Zeng M; Lu XB; Gao XS; Liu JM Phys Rev E; 2017 Jul; 96(1-1):012103. PubMed ID: 29347150 [TBL] [Abstract][Full Text] [Related]
4. Ashkin-teller criticality and pseudo-first-order behavior in a frustrated Ising model on the square lattice. Jin S; Sen A; Sandvik AW Phys Rev Lett; 2012 Jan; 108(4):045702. PubMed ID: 22400864 [TBL] [Abstract][Full Text] [Related]
5. Phase transitions of the Ashkin-Teller model including antiferromagnetic interactions on a type of diamond hierarchical lattice. Le JX; Yang ZR Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066107. PubMed ID: 15244667 [TBL] [Abstract][Full Text] [Related]
6. Improving the efficiency of Monte Carlo simulations of systems that undergo temperature-driven phase transitions. Velazquez L; Castro-Palacio JC Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013311. PubMed ID: 23944587 [TBL] [Abstract][Full Text] [Related]
7. Phase Diagram of the Ashkin-Teller Model. Aoun Y; Dober M; Glazman A Commun Math Phys; 2024; 405(2):37. PubMed ID: 38344683 [TBL] [Abstract][Full Text] [Related]
8. Phase transitions in two-dimensional model colloids in a one-dimensional external potential. Bürzle F; Nielaba P Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051112. PubMed ID: 18233628 [TBL] [Abstract][Full Text] [Related]
9. Nonequilibrium critical dynamics of the two-dimensional Ashkin-Teller model at the Baxter line. Fernandes HA; da Silva R; Caparica AA; de Felício JRD Phys Rev E; 2017 Apr; 95(4-1):042105. PubMed ID: 28505782 [TBL] [Abstract][Full Text] [Related]
10. Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Wang F; Landau DP Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056101. PubMed ID: 11736008 [TBL] [Abstract][Full Text] [Related]
12. Phase diagram for a two-dimensional, two-temperature, diffusive XY model. Reichl MD; Del Genio CI; Bassler KE Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):040102. PubMed ID: 21230222 [TBL] [Abstract][Full Text] [Related]
13. Kinetic Ashkin-Teller model with competing dynamics. Bekhechi S; Benyoussef A; Ettaki B; Loulidi M; El Kenz A; Hontinfinde F Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016134. PubMed ID: 11461358 [TBL] [Abstract][Full Text] [Related]
14. Monte Carlo study of the three-dimensional Coulomb frustrated Ising ferromagnet. Grousson M; Tarjus G; Viot P Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036109. PubMed ID: 11580396 [TBL] [Abstract][Full Text] [Related]
15. Phase diagram for the bisected-hexagonal-lattice five-state Potts antiferromagnet. Salas J Phys Rev E; 2020 Sep; 102(3-1):032124. PubMed ID: 33076030 [TBL] [Abstract][Full Text] [Related]
16. Critical nonequilibrium relaxation in the Swendsen-Wang algorithm in the Berezinsky-Kosterlitz-Thouless and weak first-order phase transitions. Nonomura Y; Tomita Y Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062121. PubMed ID: 26764646 [TBL] [Abstract][Full Text] [Related]
17. Dilute Potts model in two dimensions. Qian X; Deng Y; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056132. PubMed ID: 16383713 [TBL] [Abstract][Full Text] [Related]
18. Zero-temperature phase transitions and their anomalous influence on thermodynamic behavior in the q-state Potts model on a diamond chain. Panov Y; Rojas O Phys Rev E; 2023 Oct; 108(4-1):044144. PubMed ID: 37978719 [TBL] [Abstract][Full Text] [Related]
19. Evidence of Kosterlitz-Thouless phase transitions in the Ising model with dipolar interactions. Bab MA; Saracco GP Phys Rev E; 2019 Aug; 100(2-1):022143. PubMed ID: 31574726 [TBL] [Abstract][Full Text] [Related]