BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34271739)

  • 1. Effect of loop sequence on unzipping of short DNA hairpins.
    Upadhyaya A; Kumar S
    Phys Rev E; 2021 Jun; 103(6-1):062411. PubMed ID: 34271739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melting studies of short DNA hairpins: influence of loop sequence and adjoining base pair identity on hairpin thermodynamic stability.
    Vallone PM; Paner TM; Hilario J; Lane MJ; Faldasz BD; Benight AS
    Biopolymers; 1999 Oct; 50(4):425-42. PubMed ID: 10423551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops.
    Antao VP; Tinoco I
    Nucleic Acids Res; 1992 Feb; 20(4):819-24. PubMed ID: 1371866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of loop residues on the relative stabilities of DNA hairpin structures.
    Senior MM; Jones RA; Breslauer KJ
    Proc Natl Acad Sci U S A; 1988 Sep; 85(17):6242-6. PubMed ID: 3413094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops.
    Vecenie CJ; Morrow CV; Zyra A; Serra MJ
    Biochemistry; 2006 Feb; 45(5):1400-7. PubMed ID: 16445282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic stability of the 5' dangling-ended DNA hairpins formed from sequences 5'-(XY)2GGATAC(T)4GTATCC-3', where X, Y = A, T, G, C.
    Doktycz MJ; Paner TM; Amaratunga M; Benight AS
    Biopolymers; 1990; 30(7-8):829-45. PubMed ID: 2275982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic coupling of the loop and stem in unusually stable DNA hairpins closed by CG base pairs.
    Moody EM; Bevilacqua PC
    J Am Chem Soc; 2003 Feb; 125(8):2032-3. PubMed ID: 12590515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput thermal stability assessment of DNA hairpins based on high resolution melting.
    Wang J; Dong P; Wu W; Pan X; Liang X
    J Biomol Struct Dyn; 2018 Jan; 36(1):1-13. PubMed ID: 28024437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel-stranded DNA with mixed AT/GC composition: role of trans G.C base pairs in sequence dependent helical stability.
    Shchyolkina AK; Borisova OF; Livshits MA; Pozmogova GE; Chernov BK; Klement R; Jovin TM
    Biochemistry; 2000 Aug; 39(33):10034-44. PubMed ID: 10955991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of melting transitions of the DNA hairpins formed from the oligomer sequences d[GGATAC(X)4GTATCC] (X = A, T, G, C).
    Paner TM; Amaratunga M; Doktycz MJ; Benight AS
    Biopolymers; 1990 Dec; 29(14):1715-34. PubMed ID: 2207283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the closing base pair for d(GCA) hairpin stability: free energy analysis and folding simulations.
    Kannan S; Zacharias M
    Nucleic Acids Res; 2011 Oct; 39(19):8271-80. PubMed ID: 21724608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence-Dependent Melting and Refolding Dynamics of RNA UNCG Tetraloops Using Temperature-Jump/Drop Infrared Spectroscopy.
    Howe CP; Greetham GM; Procacci B; Parker AW; Hunt NT
    J Phys Chem B; 2023 Feb; 127(7):1586-1597. PubMed ID: 36787177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Counterion and polythymidine loop-length-dependent folding and thermodynamic stability of DNA hairpins reveal the unusual counterion-dependent stability of tetraloop hairpins.
    Nayak RK; Van Orden A
    J Phys Chem B; 2013 Nov; 117(45):13956-66. PubMed ID: 24144397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of RNA hairpins closed by wobble base pairs.
    Giese MR; Betschart K; Dale T; Riley CK; Rowan C; Sprouse KJ; Serra MJ
    Biochemistry; 1998 Jan; 37(4):1094-100. PubMed ID: 9454601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of hydrostatic pressure on the thermal stability of DNA hairpins.
    Amiri AR; Macgregor RB
    Biophys Chem; 2011 Jun; 156(1):88-95. PubMed ID: 21392879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal vs fishhook hairpin DNA: unzipping locations and mechanisms in the α-hemolysin nanopore.
    Ding Y; Fleming AM; White HS; Burrows CJ
    J Phys Chem B; 2014 Nov; 118(45):12873-82. PubMed ID: 25333648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of thermodynamically stable and unstable RNA hairpins from a triloop combinatorial library.
    Shu Z; Bevilacqua PC
    Biochemistry; 1999 Nov; 38(46):15369-79. PubMed ID: 10563823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of base sequence on the loop folding in DNA hairpins.
    Blommers MJ; Walters JA; Haasnoot CA; Aelen JM; van der Marel GA; van Boom JH; Hilbers CW
    Biochemistry; 1989 Sep; 28(18):7491-8. PubMed ID: 2819083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force-induced melting of DNA hairpin: Unfolding pathways and phase diagrams.
    Rudra S; Chauhan K; Singh AR; Kumar S
    Phys Rev E; 2023 May; 107(5-1):054501. PubMed ID: 37328992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromechanics of base pair unzipping in the DNA duplex.
    Volkov SN; Paramonova EV; Yakubovich AV; Solov'yov AV
    J Phys Condens Matter; 2012 Jan; 24(3):035104. PubMed ID: 22173097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.