These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 34271750)

  • 1. Microfluidics of liquid crystals induced by laser radiation.
    S Liwa I; Maslennikov PV; Zakharov AV
    Phys Rev E; 2021 Jun; 103(6-1):062702. PubMed ID: 34271750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nature of thermally excited vortical flow in a microsized nematic volume.
    Zakharov AV; Maslennikov PV
    Phys Rev E; 2019 Mar; 99(3-1):032701. PubMed ID: 30999456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-excited motion of liquid crystals confined in a microsized volume with a free surface.
    Zakharov AV; Maslennikov PV
    Phys Rev E; 2017 Nov; 96(5-1):052705. PubMed ID: 29347765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonmechanical principle for producing a flow in a homogeneously aligned microfluidic nematic channel.
    S Liwa I; Zakharov AV
    Eur Phys J E Soft Matter; 2020 May; 43(5):29. PubMed ID: 32447565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanofluidics of nematic liquid crystals in hollow capillaries.
    Śliwa I; Maslennikov PV; Zakharov AV
    Phys Rev E; 2021 Aug; 104(2-1):024702. PubMed ID: 34525651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically driven nematic flow in microfluidic devices containing a temperature gradient.
    Zakharov AV; Maslennikov PV; Pasechnik SV
    Phys Rev E; 2020 Jun; 101(6-1):062702. PubMed ID: 32688604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nematic director reorientation at solid and liquid interfaces under flow: SAXS studies in a microfluidic device.
    Silva BF; Zepeda-Rosales M; Venkateswaran N; Fletcher BJ; Carter LG; Matsui T; Weiss TM; Han J; Li Y; Olsson U; Safinya CR
    Langmuir; 2015 Apr; 31(14):4361-71. PubMed ID: 25396748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic theory for nematic shells: The interplay among curvature, flow, and alignment.
    Napoli G; Vergori L
    Phys Rev E; 2016 Aug; 94(2-1):020701. PubMed ID: 27627231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient flow-driven distortion of a nematic liquid crystal in channel flow with dissipative weak planar anchoring.
    Cousins JRL; Wilson SK; Mottram NJ; Wilkes D; Weegels L
    Phys Rev E; 2020 Dec; 102(6-1):062703. PubMed ID: 33466031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized nematohydrodynamic boundary conditions with application to bistable twisted nematic liquid-crystal displays.
    Fang A; Qian T; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061703. PubMed ID: 19256854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Director reorientation in a hybrid-oriented liquid-crystal film induced by thermomechanical effect.
    Zakharov AV; Vakulenko AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031711. PubMed ID: 19905135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid relaxation: A new Parodi-like relation for nematic liquid crystals.
    Biscari P; DiCarlo A; Turzi SS
    Phys Rev E; 2016 May; 93(5):052704. PubMed ID: 27300957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of shear flow on the Fréedericksz transition in nematic liquid crystals.
    Makarov DV; Zakhlevnykh AN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041710. PubMed ID: 17155081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical properties of nematic liquid crystals subjected to shear flow and magnetic fields: tumbling instability and nonequilibrium fluctuations.
    Fatriansyah JF; Orihara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012510. PubMed ID: 23944477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the active viscosity and self-propelling speed in channel flows of active polar liquid crystals.
    Yang X; Wang Q
    Soft Matter; 2016 Jan; 12(4):1262-78. PubMed ID: 26583506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling flows of confined nematic liquid crystals.
    Hernández-Ortiz JP; Gettelfinger BT; Moreno-Razo J; de Pablo JJ
    J Chem Phys; 2011 Apr; 134(13):134905. PubMed ID: 21476772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of hybrid type nanomaterials in peristaltic activity of viscous fluid considering nonlinear radiation, entropy optimization and slip effects.
    Farooq S; Ijaz Khan M; Waqas M; Hayat T; Alsaedi A
    Comput Methods Programs Biomed; 2020 Feb; 184():105086. PubMed ID: 31627153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent developments of analysis for hydrodynamic flow of nematic liquid crystals.
    Lin F; Wang C
    Philos Trans A Math Phys Eng Sci; 2014 Nov; 372(2029):. PubMed ID: 25332384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability analysis of flow of active extensile fibers in confined domains.
    Zhao L; Yao L; Golovaty D; Ignés-Mullol J; Sagués F; Carme Calderer M
    Chaos; 2020 Nov; 30(11):113105. PubMed ID: 33261333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure-driven changes to spontaneous flow in active nematic liquid crystals.
    Walton J; McKay G; Grinfeld M; Mottram NJ
    Eur Phys J E Soft Matter; 2020 Aug; 43(8):51. PubMed ID: 32743686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.