These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 3427188)
1. Dynamics of the phosphate group in phospholipid bilayers. A 31P nuclear relaxation time study. Milburn MP; Jeffrey KR Biophys J; 1987 Nov; 52(5):791-9. PubMed ID: 3427188 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of the phosphate group in phospholipid bilayers. A 31P-1H transient Overhauser effect study. Milburn MP; Jeffrey KR Biophys J; 1990 Jul; 58(1):187-94. PubMed ID: 2383631 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of the phosphate group in phospholipid bilayers. A 31P angular dependent nuclear spin relaxation time study. Milburn MP; Jeffrey KR Biophys J; 1989 Sep; 56(3):543-9. PubMed ID: 2790137 [TBL] [Abstract][Full Text] [Related]
4. A 31P-NMR spin-lattice relaxation and 31P[1H] nuclear Overhauser effect study of sonicated small unilamellar phosphatidylcholine vesicles. Tauskela JS; Thompson M Biochim Biophys Acta; 1992 Feb; 1104(1):137-46. PubMed ID: 1550841 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of phosphate head groups in biomembranes. Comprehensive analysis using phosphorus-31 nuclear magnetic resonance lineshape and relaxation time measurements. Dufourc EJ; Mayer C; Stohrer J; Althoff G; Kothe G Biophys J; 1992 Jan; 61(1):42-57. PubMed ID: 1540698 [TBL] [Abstract][Full Text] [Related]
6. Anisotropic 2H-nuclear magnetic resonance spin-lattice relaxation in cerebroside- and phospholipid-cholesterol bilayer membranes. Siminovitch DJ; Ruocco MJ; Olejniczak ET; Das Gupta SK; Griffin RG Biophys J; 1988 Sep; 54(3):373-81. PubMed ID: 3207831 [TBL] [Abstract][Full Text] [Related]
7. Theory for nuclear magnetic relaxation of probes in anisotropic systems: application of cholesterol in phospholipid vesicles. Brainard JR; Szabo A Biochemistry; 1981 Aug; 20(16):4618-28. PubMed ID: 7197547 [TBL] [Abstract][Full Text] [Related]
8. 31P NMR relaxation studies of the activation of the coenzyme phosphate of glycogen phosphorylase. The role of motion of the bound phosphate. Withers SG; Madsen NB; Sykes BD Biophys J; 1985 Dec; 48(6):1019-26. PubMed ID: 3937556 [TBL] [Abstract][Full Text] [Related]
9. Lipid specificity in the interaction of cytochrome c with anionic phospholipid bilayers revealed by solid-state 31P NMR. Pinheiro TJ; Watts A Biochemistry; 1994 Mar; 33(9):2451-8. PubMed ID: 8117705 [TBL] [Abstract][Full Text] [Related]
10. Mapping of glucose and glucose-6-phosphate binding sites on bovine brain hexokinase. A 1H- and 31P-NMR investigation. Jarori GK; Iyer SB; Kasturi SR; Kenkare UW Eur J Biochem; 1990 Feb; 188(1):9-14. PubMed ID: 2318206 [TBL] [Abstract][Full Text] [Related]
11. Protein-lipid interactions. A nuclear magnetic resonance study of sarcoplasmic reticulum Ca2,Mg2+-ATPase, lipophilin, and proteolipid apoprotein-lecithin systems and a comparison with the effects of cholesterol. Rice DM; Meadows MD; Scheinman AO; Goñi FM; Gómez-Fernández JC; Moscarello MA; Chapman D; Oldfield E Biochemistry; 1979 Dec; 18(26):5893-903. PubMed ID: 160247 [TBL] [Abstract][Full Text] [Related]
12. Rotation of lipids in membranes: molecular dynamics simulation, 31P spin-lattice relaxation, and rigid-body dynamics. Klauda JB; Roberts MF; Redfield AG; Brooks BR; Pastor RW Biophys J; 2008 Apr; 94(8):3074-83. PubMed ID: 18192349 [TBL] [Abstract][Full Text] [Related]
13. Solvent effect on phosphatidylcholine headgroup dynamics as revealed by the energetics and dynamics of two gel-state bilayer headgroup structures at subzero temperatures. Hsieh CH; Wu WG Biophys J; 1995 Jul; 69(1):4-12. PubMed ID: 7669908 [TBL] [Abstract][Full Text] [Related]
14. High-resolution field-cycling NMR studies of a DNA octamer as a probe of phosphodiester dynamics and comparison with computer simulation. Roberts MF; Cui Q; Turner CJ; Case DA; Redfield AG Biochemistry; 2004 Mar; 43(12):3637-50. PubMed ID: 15035634 [TBL] [Abstract][Full Text] [Related]