These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 34271980)

  • 1. Prediction of combination therapies based on topological modeling of the immune signaling network in multiple sclerosis.
    Bernardo-Faura M; Rinas M; Wirbel J; Pertsovskaya I; Pliaka V; Messinis DE; Vila G; Sakellaropoulos T; Faigle W; Stridh P; Behrens JR; Olsson T; Martin R; Paul F; Alexopoulos LG; Villoslada P; Saez-Rodriguez J
    Genome Med; 2021 Jul; 13(1):117. PubMed ID: 34271980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current multiple sclerosis treatments have improved our understanding of MS autoimmune pathogenesis.
    Martin R; Sospedra M; Rosito M; Engelhardt B
    Eur J Immunol; 2016 Sep; 46(9):2078-90. PubMed ID: 27467894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Toll-like Receptor 2 (TLR2)-related Immunopathological Responses in the Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis.
    Jafarzadeh A; Nemati M; Khorramdelazad H; Mirshafiey A
    Iran J Allergy Asthma Immunol; 2019 Jun; 18(3):230-250. PubMed ID: 31522431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Gut-Brain Axis in Multiple Sclerosis. Is Its Dysfunction a Pathological Trigger or a Consequence of the Disease?
    Parodi B; Kerlero de Rosbo N
    Front Immunol; 2021; 12():718220. PubMed ID: 34621267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxycarboxylic Acid Receptor 2, a Pleiotropically Linked Receptor for the Multiple Sclerosis Drug, Monomethyl Fumarate. Possible Implications for the Inflammatory Response.
    Parodi B; Sanna A; Cedola A; Uccelli A; Kerlero de Rosbo N
    Front Immunol; 2021; 12():655212. PubMed ID: 34084164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Astrocytic YAP protects the optic nerve and retina in an experimental autoimmune encephalomyelitis model through TGF-β signaling.
    Wu Q; Miao X; Zhang J; Xiang L; Li X; Bao X; Du S; Wang M; Miao S; Fan Y; Wang W; Xu X; Shen X; Yang D; Wang X; Fang Y; Hu L; Pan X; Dong H; Wang H; Wang Y; Li J; Huang Z
    Theranostics; 2021; 11(17):8480-8499. PubMed ID: 34373754
    [No Abstract]   [Full Text] [Related]  

  • 7. Glutamate, T cells and multiple sclerosis.
    Levite M
    J Neural Transm (Vienna); 2017 Jul; 124(7):775-798. PubMed ID: 28236206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monocyte and Lymphocyte Activation and Regulation in Multiple Sclerosis Patients. Therapy Effects.
    González-Oria MC; Márquez-Coello M; Girón-Ortega JA; Argente J; Moya M; Girón-González JA
    J Neuroimmune Pharmacol; 2019 Sep; 14(3):413-422. PubMed ID: 30649665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic Impact of Sphingosine 1-phosphate Receptor Signaling in Multiple Sclerosis.
    Candido K; Soufi H; Bandyopadhyay M; Dasgupta S
    Mini Rev Med Chem; 2016; 16(7):547-54. PubMed ID: 26156414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of disease modifying drugs on peripheral blood B cell subsets: A cross sectional study in multiple sclerosis patients treated with interferon-β, glatiramer acetate, dimethyl fumarate, fingolimod or natalizumab.
    Kemmerer CL; Pernpeintner V; Ruschil C; Abdelhak A; Scholl M; Ziemann U; Krumbholz M; Hemmer B; Kowarik MC
    PLoS One; 2020; 15(7):e0235449. PubMed ID: 32716916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolution of inflammation during multiple sclerosis.
    Ruiz F; Vigne S; Pot C
    Semin Immunopathol; 2019 Nov; 41(6):711-726. PubMed ID: 31732775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of Initial Disease-Modifying Therapy With Later Conversion to Secondary Progressive Multiple Sclerosis.
    Brown JWL; Coles A; Horakova D; Havrdova E; Izquierdo G; Prat A; Girard M; Duquette P; Trojano M; Lugaresi A; Bergamaschi R; Grammond P; Alroughani R; Hupperts R; McCombe P; Van Pesch V; Sola P; Ferraro D; Grand'Maison F; Terzi M; Lechner-Scott J; Flechter S; Slee M; Shaygannejad V; Pucci E; Granella F; Jokubaitis V; Willis M; Rice C; Scolding N; Wilkins A; Pearson OR; Ziemssen T; Hutchinson M; Harding K; Jones J; McGuigan C; Butzkueven H; Kalincik T; Robertson N;
    JAMA; 2019 Jan; 321(2):175-187. PubMed ID: 30644981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fingolimod versus interferon beta/glatiramer acetate after natalizumab suspension in multiple sclerosis.
    Iaffaldano P; Lucisano G; Pozzilli C; Brescia Morra V; Ghezzi A; Millefiorini E; Patti F; Lugaresi A; Zimatore GB; Marrosu MG; Amato MP; Bertolotto A; Bergamaschi R; Granella F; Coniglio G; Tedeschi G; Sola P; Lus G; Ferrò MT; Iuliano G; Corea F; Protti A; Cavalla P; Guareschi A; Rodegher M; Paolicelli D; Tortorella C; Lepore V; Prosperini L; Saccà F; Baroncini D; Comi G; Trojano M;
    Brain; 2015 Nov; 138(Pt 11):3275-86. PubMed ID: 26362907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining evidence from four immune cell types identifies DNA methylation patterns that implicate functionally distinct pathways during Multiple Sclerosis progression.
    Ewing E; Kular L; Fernandes SJ; Karathanasis N; Lagani V; Ruhrmann S; Tsamardinos I; Tegner J; Piehl F; Gomez-Cabrero D; Jagodic M
    EBioMedicine; 2019 May; 43():411-423. PubMed ID: 31053557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Established and novel disease-modifying treatments in multiple sclerosis.
    Cross AH; Naismith RT
    J Intern Med; 2014 Apr; 275(4):350-63. PubMed ID: 24444048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of protein networks involved in the disease course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis.
    Vanheel A; Daniels R; Plaisance S; Baeten K; Hendriks JJ; Leprince P; Dumont D; Robben J; Brône B; Stinissen P; Noben JP; Hellings N
    PLoS One; 2012; 7(4):e35544. PubMed ID: 22530047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular subtyping of cancer and nomination of kinase candidates for inhibition with phosphoproteomics: Reanalysis of CPTAC ovarian cancer.
    Tong M; Yu C; Zhan D; Zhang M; Zhen B; Zhu W; Wang Y; Wu C; He F; Qin J; Li T
    EBioMedicine; 2019 Feb; 40():305-317. PubMed ID: 30594550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A gender-related action of IFNbeta-therapy was found in multiple sclerosis.
    Contasta I; Totaro R; Pellegrini P; Del Beato T; Carolei A; Berghella AM
    J Transl Med; 2012 Nov; 10():223. PubMed ID: 23148845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MAPK pathway and B cells overactivation in multiple sclerosis revealed by phosphoproteomics and genomic analysis.
    Kotelnikova E; Kiani NA; Messinis D; Pertsovskaya I; Pliaka V; Bernardo-Faura M; Rinas M; Vila G; Zubizarreta I; Pulido-Valdeolivas I; Sakellaropoulos T; Faigle W; Silberberg G; Masso M; Stridh P; Behrens J; Olsson T; Martin R; Paul F; Alexopoulos LG; Saez-Rodriguez J; Tegner J; Villoslada P
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9671-9676. PubMed ID: 31004050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic Dysfunction in Multiple Sclerosis: A Red Thread from Inflammation to Network Disconnection.
    Bellingacci L; Mancini A; Gaetani L; Tozzi A; Parnetti L; Di Filippo M
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.