BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34272139)

  • 1. A Cross-sectional Study of Perceptual and Acoustic Voice Characteristics in Healthy Aging.
    Schultz BG; Rojas S; St John M; Kefalianos E; Vogel AP
    J Voice; 2023 Nov; 37(6):969.e23-969.e41. PubMed ID: 34272139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the cepstral acoustic characteristics of voice in healthy children.
    Demirci AN; Köse A; Aydinli FE; İncebay Ö; Yilmaz T
    Int J Pediatr Otorhinolaryngol; 2021 Sep; 148():110815. PubMed ID: 34217000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of cepstral analysis for differentiating dysphonic from normal voices in children.
    Esen Aydinli F; Özcebe E; İncebay Ö
    Int J Pediatr Otorhinolaryngol; 2019 Jan; 116():107-113. PubMed ID: 30554679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of a normative cepstral pediatric acoustic database.
    Infusino SA; Diercks GR; Rogers DJ; Garcia J; Ojha S; Maurer R; Bunting G; Hartnick CJ
    JAMA Otolaryngol Head Neck Surg; 2015 Apr; 141(4):358-63. PubMed ID: 25612091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vocal Changes of Men and Women from Different Age Decades: An Analysis from 30 Years of Age.
    Oliveira Santos A; Godoy J; Silverio K; Brasolotto A
    J Voice; 2023 Nov; 37(6):840-850. PubMed ID: 34284927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive value and discriminant capacity of cepstral- and spectral-based measures during continuous speech.
    Lowell SY; Colton RH; Kelley RT; Mizia SA
    J Voice; 2013 Jul; 27(4):393-400. PubMed ID: 23684735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic Measures of Dysphonia in Amyotrophic Lateral Sclerosis.
    Maffei MF; Green JR; Murton O; Yunusova Y; Rowe HP; Wehbe F; Diana K; Nicholson K; Berry JD; Connaghan KP
    J Speech Lang Hear Res; 2023 Mar; 66(3):872-887. PubMed ID: 36802910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of age and vocal task on cepstral/spectral measures of vocal function in adult males.
    Watts CR; Ronshaugen R; Saenz D
    Clin Linguist Phon; 2015 Jun; 29(6):415-23. PubMed ID: 25651197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of Cepstral Acoustic Analysis for Normal and Pathological Voice in the Japanese Language.
    Mizuta M; Abe C; Taguchi E; Takeue T; Tamaki H; Haji T
    J Voice; 2022 Nov; 36(6):770-776. PubMed ID: 32951954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cepstral analysis of hypokinetic and ataxic voices: correlations with perceptual and other acoustic measures.
    Jannetts S; Lowit A
    J Voice; 2014 Nov; 28(6):673-80. PubMed ID: 24836365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voice in Friedreich Ataxia.
    Vogel AP; Wardrop MI; Folker JE; Synofzik M; Corben LA; Delatycki MB; Awan SN
    J Voice; 2017 Mar; 31(2):243.e9-243.e19. PubMed ID: 27501923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning in automatic detection of dysphonia: Comparing acoustic features and developing a generalizable framework.
    Chen Z; Zhu P; Qiu W; Guo J; Li Y
    Int J Lang Commun Disord; 2023 Mar; 58(2):279-294. PubMed ID: 36117378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Voice Disorder Status From Smoothed Measures of Cepstral Peak Prominence Using Praat and Analysis of Dysphonia in Speech and Voice (ADSV).
    Sauder C; Bretl M; Eadie T
    J Voice; 2017 Sep; 31(5):557-566. PubMed ID: 28169094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic analyses of thyroidectomy-related changes in vowel phonation.
    Solomon NP; Awan SN; Helou LB; Stojadinovic A
    J Voice; 2012 Nov; 26(6):711-20. PubMed ID: 23177742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of dysphonia: cepstral analysis versus conventional acoustic analysis.
    Hassan EM; Abdel Hady AF; Shohdi SS; Eldessouky HM; Din MHB
    Logoped Phoniatr Vocol; 2021 Oct; 46(3):99-109. PubMed ID: 32436465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundamental Frequency and Intensity Effects on Cepstral Measures in Vowels from Connected Speech of Speakers with Voice Disorders.
    Sampaio MC; Bohlender JE; Brockmann-Bauser M
    J Voice; 2021 May; 35(3):422-431. PubMed ID: 31883852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of cepstral analyses for differentiating normal from dysphonic voices: a comparative study of connected speech versus sustained vowel in European Portuguese female speakers.
    Brinca LF; Batista AP; Tavares AI; Gonçalves IC; Moreno ML
    J Voice; 2014 May; 28(3):282-6. PubMed ID: 24491499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The usefulness of multi voice evaluation: Development of a model for predicting a degree of dysphonia.
    Lee Y; Park H; Bae I; Kim G
    J Voice; 2023 Jan; 37(1):142.e5-142.e12. PubMed ID: 33199080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Usefulness of Auditory Perceptual Assessment and Acoustic Analysis for Classifying the Voice Severity.
    Lee Y; Kim G; Kwon S
    J Voice; 2020 Nov; 34(6):884-893. PubMed ID: 31104881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral- and cepstral-based acoustic features of dysphonic, strained voice quality.
    Lowell SY; Kelley RT; Awan SN; Colton RH; Chan NH
    Ann Otol Rhinol Laryngol; 2012 Aug; 121(8):539-48. PubMed ID: 22953661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.