BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 34272427)

  • 1. Mitochondrial energetics with transmembrane electrostatically localized protons: do we have a thermotrophic feature?
    Lee JW
    Sci Rep; 2021 Jul; 11(1):14575. PubMed ID: 34272427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isothermal Environmental Heat Energy Utilization by Transmembrane Electrostatically Localized Protons at the Liquid-Membrane Interface.
    Lee JW
    ACS Omega; 2020 Jul; 5(28):17385-17395. PubMed ID: 32715223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy Renewal: Isothermal Utilization of Environmental Heat Energy with Asymmetric Structures.
    Lee JW
    Entropy (Basel); 2021 May; 23(6):. PubMed ID: 34070431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critique of the capacitor-based "Transmembrane Electrostatically Localized Proton" hypothesis.
    Silverstein TP
    J Bioenerg Biomembr; 2022 Apr; 54(2):59-65. PubMed ID: 35190945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lee's "Transmembrane Electrostatically-Localized Proton" model does NOT offer a better understanding of neuronal transmembrane potentials.
    Silverstein TP
    J Neurophysiol; 2023 Jul; 130(1):123-127. PubMed ID: 37314087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New Theory about Interfacial Proton Diffusion Revisited: The Commonly Accepted Laws of Electrostatics and Diffusion Prevail.
    Knyazev DG; Silverstein TP; Brescia S; Maznichenko A; Pohl P
    Biomolecules; 2023 Nov; 13(11):. PubMed ID: 38002323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient protonic capacitor: Explaining the bacteriorhodopsin membrane experiment of Heberle et al. 1994.
    Lee JW
    Biophys Chem; 2023 Sep; 300():107072. PubMed ID: 37406610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electrochemical transmission in I-Band segments of the mitochondrial reticulum.
    Patel KD; Glancy B; Balaban RS
    Biochim Biophys Acta; 2016 Aug; 1857(8):1284-1289. PubMed ID: 26921810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the localized coupling of respiration and phosphorylation in mitochondria.
    Yaguzhinsky LS; Yurkov VI; Krasinskaya IP
    Biochim Biophys Acta; 2006; 1757(5-6):408-14. PubMed ID: 16730641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatically localized proton bioenergetics: better understanding membrane potential.
    Lee JW
    Heliyon; 2019 Jul; 5(7):e01961. PubMed ID: 31367684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for DeltapH surface component (DeltapH(S)) of proton motive force in ATP synthesis of mitochondria.
    Xiong JW; Zhu L; Jiao X; Liu SS
    Biochim Biophys Acta; 2010 Mar; 1800(3):213-22. PubMed ID: 19695309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protonic conductor: Explaining the transient "excess protons" experiment of Pohl's group 2012.
    Lee JW
    Biophys Chem; 2023 May; 296():106983. PubMed ID: 36868162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of generation of local ΔpH in mitochondria and bacteria.
    Medvedev ES; Stuchebrukhov AA
    Biochemistry (Mosc); 2014 May; 79(5):425-34. PubMed ID: 24954593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Mechanism of Sustained Mitochondrial Membrane Potential Without Functioning Complex IV.
    Takahashi E; Yamaoka Y
    Adv Exp Med Biol; 2022; 1395():367-372. PubMed ID: 36527664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial F
    Rieger B; Arroum T; Borowski MT; Villalta J; Busch KB
    EMBO Rep; 2021 Dec; 22(12):e52727. PubMed ID: 34595823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of aerobiosis and nitrogen source on the proton motive force in growing Escherichia coli and Klebsiella pneumoniae cells.
    Kashket ER
    J Bacteriol; 1981 Apr; 146(1):377-84. PubMed ID: 6260744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lee's transient protonic capacitor cannot explain the surface proton current observed in bacteriorhodopsin purple membranes.
    Silverstein TP
    Biophys Chem; 2023 Oct; 301():107096. PubMed ID: 37604049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes.
    Toth A; Meyrat A; Stoldt S; Santiago R; Wenzel D; Jakobs S; von Ballmoos C; Ott M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2412-2421. PubMed ID: 31964824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioenergetic aspects of archaeal and bacterial hydrogen metabolism.
    Pinske C
    Adv Microb Physiol; 2019; 74():487-514. PubMed ID: 31126536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase.
    Nolan DP; Voorheis HP
    Eur J Biochem; 1992 Oct; 209(1):207-16. PubMed ID: 1327770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.