BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 34272427)

  • 21. Protonic Capacitor: Elucidating the biological significance of mitochondrial cristae formation.
    Lee JW
    Sci Rep; 2020 Jun; 10(1):10304. PubMed ID: 32601276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural investigation of the proton-coupled secondary transporters.
    Yan N
    Curr Opin Struct Biol; 2013 Aug; 23(4):483-91. PubMed ID: 23806360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exogenous energy supply to the plasma membrane of dark anaerobic cyanobacterium Anacystis nidulans: thermodynamic and kinetic characterization of the ATP synthesis effected by an artificial proton motive force.
    Peschek GA; Hinterstoisser B; Riedler M; Muchl R; Nitschmann WH
    Arch Biochem Biophys; 1986 May; 247(1):40-8. PubMed ID: 3010879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the relationship between Z delta pH and delta psi as components of the protonmotive potential in Mitchell's chemiosmotic system.
    Reich JG; Rohde K
    Biomed Biochim Acta; 1983; 42(1):37-46. PubMed ID: 6309159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics.
    Liu SS
    Ann N Y Acad Sci; 2010 Jul; 1201():84-95. PubMed ID: 20649544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogen ion gradients across the mitochondrial, endosomal and plasma membranes in bloodstream forms of trypanosoma brucei solving the three-compartment problem.
    Nolan DP; Voorheis HP
    Eur J Biochem; 2000 Aug; 267(15):4601-14. PubMed ID: 10903492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proton motive force in growing Streptococcus lactis and Staphylococcus aureus cells under aerobic and anaerobic conditions.
    Kashket ER
    J Bacteriol; 1981 Apr; 146(1):369-76. PubMed ID: 6260743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supercomplex supercomplexes: Raison d'etre and functional significance of supramolecular organization in oxidative phosphorylation.
    Nath S
    Biomol Concepts; 2022 May; 13(1):272-288. PubMed ID: 35617665
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of Energy Storage and Transformation in the Mitochondria at the Water-Membrane Interface.
    Nesterov SV; Smirnova EG; Yaguzhinsky LS
    Biochemistry (Mosc); 2022 Feb; 87(2):179-190. PubMed ID: 35508909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of the mitochondrial proton gradient by cytosolic Ca²⁺ signals.
    Poburko D; Demaurex N
    Pflugers Arch; 2012 Jul; 464(1):19-26. PubMed ID: 22526460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation.
    Kell DB
    Adv Microb Physiol; 2021; 78():1-177. PubMed ID: 34147184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proton Motive Force Inhibitors Are Detrimental to Methicillin-Resistant Staphylococcus aureus Strains.
    Mohiuddin SG; Ghosh S; Kavousi P; Orman MA
    Microbiol Spectr; 2022 Aug; 10(4):e0202422. PubMed ID: 35943153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of electric field (Delta psi) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. control of pmf parsing into Delta psi and Delta pH by ionic strength.
    Cruz JA; Sacksteder CA; Kanazawa A; Kramer DM
    Biochemistry; 2001 Feb; 40(5):1226-37. PubMed ID: 11170448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of Proton Leak in Isolated Mitochondria.
    Affourtit C; Wong HS; Brand MD
    Methods Mol Biol; 2018; 1782():157-170. PubMed ID: 29850999
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatiotemporal dynamics of the proton motive force on single bacterial cells.
    Biquet-Bisquert A; Carrio B; Meyer N; Fernandes TFD; Abkarian M; Seduk F; Magalon A; Nord AL; Pedaci F
    Sci Adv; 2024 May; 10(21):eadl5849. PubMed ID: 38781330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The relation between the internal phosphorylation potential and the proton motive force in mitochondria during ATP synthesis and hydrolysis.
    Ogawa S; Lee TM
    J Biol Chem; 1984 Aug; 259(16):10004-11. PubMed ID: 6469951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Interaction of surface-active base with fraction of membrane-bound Williams's protons].
    Iaguzhinskiĭ LS; Motovilov KA; Volkov EM; Eremeev SA
    Biofizika; 2013; 58(1):117-25. PubMed ID: 23650862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane.
    Morelli AM; Ravera S; Calzia D; Panfoli I
    Open Biol; 2019 Apr; 9(4):180221. PubMed ID: 30966998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uncoupling to survive? The role of mitochondrial inefficiency in ageing.
    Brand MD
    Exp Gerontol; 2000 Sep; 35(6-7):811-20. PubMed ID: 11053672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational modeling of mitochondrial K
    Cortassa S; Aon MA; Juhaszova M; Kobrinsky E; Zorov DB; Sollott SJ
    J Mol Cell Cardiol; 2022 Apr; 165():9-18. PubMed ID: 34954465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.