These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34272666)

  • 21. Factors contributing to dwarfing in the mangrove Avicennia marina.
    Naidoo G
    Ann Bot; 2006 Jun; 97(6):1095-101. PubMed ID: 16565149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elevated carbon dioxide and reduced salinity enhance mangrove seedling establishment in an artificial saltmarsh community.
    Manea A; Geedicke I; Leishman MR
    Oecologia; 2020 Jan; 192(1):273-280. PubMed ID: 31768738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes of plasma membrane AtPase activity, membrane potential and transmembrane proton gradient in Kandelia candel and Avicennia marina seedlings with various salinities.
    Zhao ZQ; Zheng HL; Zhu YG
    J Environ Sci (China); 2004; 16(5):742-5. PubMed ID: 15559803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensitivity to chilling temperatures and distribution differ in the mangrove species Kandelia candel and Avicennia marina.
    Kao WY; Shih CN; Tsai TT
    Tree Physiol; 2004 Jul; 24(7):859-64. PubMed ID: 15123458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth responses of Avicennia germinans and Batis maritima seedlings to weathered light sweet crude oil applied to soil and aboveground tissues.
    Heintz WJ; Willis JM
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):66148-66159. PubMed ID: 35499724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of atmospheric carbon dioxide concentrations on the performance of the mangrove Avicennia germinans over a range of salinities.
    Reef R; Winter K; Morales J; Adame MF; Reef DL; Lovelock CE
    Physiol Plant; 2015 Jul; 154(3):358-68. PubMed ID: 25263409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Different salt concentrations induce alterations both in photosynthetic parameters and salt gland activity in leaves of the mangrove Avicennia schaueriana.
    Garcia JDS; Dalmolin ÂC; França MGC; Mangabeira PAO
    Ecotoxicol Environ Saf; 2017 Jul; 141():70-74. PubMed ID: 28319861
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental tolerances of rare and common mangroves along light and salinity gradients.
    Dangremond EM; Feller IC; Sousa WP
    Oecologia; 2015 Dec; 179(4):1187-98. PubMed ID: 26267403
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of water balance in mangroves.
    Reef R; Lovelock CE
    Ann Bot; 2015 Feb; 115(3):385-95. PubMed ID: 25157072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effects of livestock wastewater on seedlings of two mangrove species].
    Ye Y; Tam NF; Lu C
    Ying Yong Sheng Tai Xue Bao; 2003 May; 14(5):766-70. PubMed ID: 12924137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oil spill from the Era: Mangroves taking eons to recover.
    Connolly RM; Connolly FN; Hayes MA
    Mar Pollut Bull; 2020 Apr; 153():110965. PubMed ID: 32056860
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radial oxygen loss is correlated with nitrogen nutrition in mangroves.
    Cheng H; Liu Y; Jiang ZY; Wang YS
    Tree Physiol; 2020 Oct; 40(11):1548-1560. PubMed ID: 32705132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Photosystem II inhibiting herbicides on mangroves--preliminary toxicology trials.
    Bell AM; Duke NC
    Mar Pollut Bull; 2005; 51(1-4):297-307. PubMed ID: 15757729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osmotic and hydraulic adjustment of mangrove saplings to extreme salinity.
    Méndez-Alonzo R; López-Portillo J; Moctezuma C; Bartlett MK; Sack L
    Tree Physiol; 2016 Dec; 36(12):1562-1572. PubMed ID: 27591440
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis.
    Krishnamurthy P; Jyothi-Prakash PA; Qin L; He J; Lin Q; Loh CS; Kumar PP
    Plant Cell Environ; 2014 Jul; 37(7):1656-71. PubMed ID: 24417377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitric oxide enhances salt secretion and Na(+) sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H(+)-ATPase and Na(+)/H(+) antiporter under high salinity.
    Chen J; Xiao Q; Wu F; Dong X; He J; Pei Z; Zheng H
    Tree Physiol; 2010 Dec; 30(12):1570-85. PubMed ID: 21030403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lipid composition of mangrove and its relevance to salt tolerance.
    Oku H; Baba S; Koga H; Takara K; Iwasaki H
    J Plant Res; 2003 Feb; 116(1):37-45. PubMed ID: 12605298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The retention and distribution of parent, alkylated, and N/O/S-containing polycyclic aromatic hydrocarbons on the epidermal tissue of mangrove seedlings.
    Li R; Tan H; Zhu Y; Zhang Y
    Environ Pollut; 2017 Jul; 226():135-142. PubMed ID: 28419920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chlorophyll-deficient propagules of Avicennia marina and apparent longer term deterioration of mangrove fitness in oil-polluted sediments.
    Duke NC; Watkinson AJ
    Mar Pollut Bull; 2002 Nov; 44(11):1269-76. PubMed ID: 12523526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Salt management strategy defines the stem and leaf hydraulic characteristics of six mangrove tree species.
    Jiang GF; Goodale UM; Liu YY; Hao GY; Cao KF
    Tree Physiol; 2017 Mar; 37(3):389-401. PubMed ID: 28100712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.