These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34272948)

  • 21. Deep neural networks rival the representation of primate IT cortex for core visual object recognition.
    Cadieu CF; Hong H; Yamins DL; Pinto N; Ardila D; Solomon EA; Majaj NJ; DiCarlo JJ
    PLoS Comput Biol; 2014 Dec; 10(12):e1003963. PubMed ID: 25521294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An ecologically motivated image dataset for deep learning yields better models of human vision.
    Mehrer J; Spoerer CJ; Jones EC; Kriegeskorte N; Kietzmann TC
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33593900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct representations in occipito-temporal, parietal, and premotor cortex during action perception revealed by fMRI and computational modeling.
    Urgen BA; Pehlivan S; Saygin AP
    Neuropsychologia; 2019 Apr; 127():35-47. PubMed ID: 30772426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noise-trained deep neural networks effectively predict human vision and its neural responses to challenging images.
    Jang H; McCormack D; Tong F
    PLoS Biol; 2021 Dec; 19(12):e3001418. PubMed ID: 34882676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep convolutional models improve predictions of macaque V1 responses to natural images.
    Cadena SA; Denfield GH; Walker EY; Gatys LA; Tolias AS; Bethge M; Ecker AS
    PLoS Comput Biol; 2019 Apr; 15(4):e1006897. PubMed ID: 31013278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of deep neural network features by decodability from human brain activity.
    Horikawa T; Aoki SC; Tsukamoto M; Kamitani Y
    Sci Data; 2019 Feb; 6():190012. PubMed ID: 30747910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain-like illusion produced by Skye's Oblique Grating in deep neural networks.
    Zhang H; Yoshida S; Li Z
    PLoS One; 2024; 19(2):e0299083. PubMed ID: 38394261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MouseNet: A biologically constrained convolutional neural network model for the mouse visual cortex.
    Shi J; Tripp B; Shea-Brown E; Mihalas S; A Buice M
    PLoS Comput Biol; 2022 Sep; 18(9):e1010427. PubMed ID: 36067234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-resolved correspondences between deep neural network layers and EEG measurements in object processing.
    Kong NCL; Kaneshiro B; Yamins DLK; Norcia AM
    Vision Res; 2020 Jul; 172():27-45. PubMed ID: 32388211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brain hierarchy score: Which deep neural networks are hierarchically brain-like?
    Nonaka S; Majima K; Aoki SC; Kamitani Y
    iScience; 2021 Sep; 24(9):103013. PubMed ID: 34522856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.
    Cichy RM; Khosla A; Pantazis D; Torralba A; Oliva A
    Sci Rep; 2016 Jun; 6():27755. PubMed ID: 27282108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Statistics of Visual Responses to Image Object Stimuli from Primate AIT Neurons to DNN Neurons.
    Dong Q; Wang H; Hu Z
    Neural Comput; 2018 Feb; 30(2):447-476. PubMed ID: 29162010
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Divergences in color perception between deep neural networks and humans.
    Nadler EO; Darragh-Ford E; Desikan BS; Conaway C; Chu M; Hull T; Guilbeault D
    Cognition; 2023 Dec; 241():105621. PubMed ID: 37716312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-performing neural network models of visual cortex benefit from high latent dimensionality.
    Elmoznino E; Bonner MF
    PLoS Comput Biol; 2024 Jan; 20(1):e1011792. PubMed ID: 38198504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances in understanding object recognition in the human brain: deep neural networks, temporal dynamics, and context.
    Wardle SG; Baker C
    F1000Res; 2020; 9():. PubMed ID: 32566136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increasingly complex representations of natural movies across the dorsal stream are shared between subjects.
    Güçlü U; van Gerven MAJ
    Neuroimage; 2017 Jan; 145(Pt B):329-336. PubMed ID: 26724778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Harmonizing the object recognition strategies of deep neural networks with humans.
    Fel T; Felipe I; Linsley D; Serre T
    Adv Neural Inf Process Syst; 2022 Dec; 35():9432-9446. PubMed ID: 37465369
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological convolutions improve DNN robustness to noise and generalisation.
    Evans BD; Malhotra G; Bowers JS
    Neural Netw; 2022 Apr; 148():96-110. PubMed ID: 35114495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The developmental trajectory of object recognition robustness: Children are like small adults but unlike big deep neural networks.
    Huber LS; Geirhos R; Wichmann FA
    J Vis; 2023 Jul; 23(7):4. PubMed ID: 37410494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correspondence between Monkey Visual Cortices and Layers of a Saliency Map Model Based on a Deep Convolutional Neural Network for Representations of Natural Images.
    Wagatsuma N; Hidaka A; Tamura H
    eNeuro; 2021; 8(1):. PubMed ID: 33234544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.