BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34273053)

  • 21. Modeling Physico-Chemical ADMET Endpoints with Multitask Graph Convolutional Networks.
    Montanari F; Kuhnke L; Ter Laak A; Clevert DA
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31877719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extended solvent-contact model approach to blind SAMPL5 prediction challenge for the distribution coefficients of drug-like molecules.
    Chung KC; Park H
    J Comput Aided Mol Des; 2016 Nov; 30(11):1019-1033. PubMed ID: 27448686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A blind SAMPL6 challenge: insight into the octanol-water partition coefficients of drug-like molecules via a DFT approach.
    Arslan E; Findik BK; Aviyente V
    J Comput Aided Mol Des; 2020 Apr; 34(4):463-470. PubMed ID: 31939104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Octanol-water partition coefficient measurements for the SAMPL6 blind prediction challenge.
    Işık M; Levorse D; Mobley DL; Rhodes T; Chodera JD
    J Comput Aided Mol Des; 2020 Apr; 34(4):405-420. PubMed ID: 31858363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of cyclohexane-water distribution coefficients with COSMO-RS on the SAMPL5 data set.
    Klamt A; Eckert F; Reinisch J; Wichmann K
    J Comput Aided Mol Des; 2016 Nov; 30(11):959-967. PubMed ID: 27460058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of molecular dynamics fingerprints (MDFPs) in SAMPL6 octanol-water log P blind challenge.
    Wang S; Riniker S
    J Comput Aided Mol Des; 2020 Apr; 34(4):393-403. PubMed ID: 31745704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Testing automatic methods to predict free binding energy of host-guest complexes in SAMPL7 challenge.
    Serillon D; Bo C; Barril X
    J Comput Aided Mol Des; 2021 Feb; 35(2):209-222. PubMed ID: 33464434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting Infrared Spectra with Message Passing Neural Networks.
    McGill C; Forsuelo M; Guan Y; Green WH
    J Chem Inf Model; 2021 Jun; 61(6):2594-2609. PubMed ID: 34048221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance and robustness of small molecule retention time prediction with molecular graph neural networks in industrial drug discovery campaigns.
    Vik D; Pii D; Mudaliar C; Nørregaard-Madsen M; Kontijevskis A
    Sci Rep; 2024 Apr; 14(1):8733. PubMed ID: 38627535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting Critical Properties and Acentric Factors of Fluids Using Multitask Machine Learning.
    Biswas S; Chung Y; Ramirez J; Wu H; Green WH
    J Chem Inf Model; 2023 Aug; 63(15):4574-4588. PubMed ID: 37487557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of the n-octanol/water partition coefficients in the SAMPL6 blind challenge from MST continuum solvation calculations.
    Zamora WJ; Pinheiro S; German K; Ràfols C; Curutchet C; Luque FJ
    J Comput Aided Mol Des; 2020 Apr; 34(4):443-451. PubMed ID: 31776809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multitask deep learning with dynamic task balancing for quantum mechanical properties prediction.
    Yang Z; Zhong W; Lv Q; Chen CY
    Phys Chem Chem Phys; 2022 Mar; 24(9):5383-5393. PubMed ID: 35169821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting Energetics Materials' Crystalline Density from Chemical Structure by Machine Learning.
    Nguyen P; Loveland D; Kim JT; Karande P; Hiszpanski AM; Han TY
    J Chem Inf Model; 2021 May; 61(5):2147-2158. PubMed ID: 33899482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. LogD7.4 prediction enhanced by transferring knowledge from chromatographic retention time, microscopic pKa and logP.
    Wang Y; Xiong J; Xiao F; Zhang W; Cheng K; Rao J; Niu B; Tong X; Qu N; Zhang R; Wang D; Chen K; Li X; Zheng M
    J Cheminform; 2023 Sep; 15(1):76. PubMed ID: 37670374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of n-octanol/water partition coefficients and acidity constants (pK
    Viayna A; Pinheiro S; Curutchet C; Luque FJ; Zamora WJ
    J Comput Aided Mol Des; 2021 Jul; 35(7):803-811. PubMed ID: 34244905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery.
    Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S
    Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting partition coefficients of drug-like molecules in the SAMPL6 challenge with Drude polarizable force fields.
    Ding Y; Xu Y; Qian C; Chen J; Zhu J; Huang H; Shi Y; Huang J
    J Comput Aided Mol Des; 2020 Apr; 34(4):421-435. PubMed ID: 31960252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Absolute and relative pK
    Zeng Q; Jones MR; Brooks BR
    J Comput Aided Mol Des; 2018 Oct; 32(10):1179-1189. PubMed ID: 30128926
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-channel GCN ensembled machine learning model for molecular aqueous solubility prediction on a clean dataset.
    Deng C; Liang L; Xing G; Hua Y; Lu T; Zhang Y; Chen Y; Liu H
    Mol Divers; 2023 Jun; 27(3):1023-1035. PubMed ID: 35739374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The SAMPL6 challenge on predicting aqueous pK
    Tielker N; Eberlein L; Güssregen S; Kast SM
    J Comput Aided Mol Des; 2018 Oct; 32(10):1151-1163. PubMed ID: 30073500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.