These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 34273123)
1. A comparative life cycle assessment of a cascade heat pump and a natural gas furnace for residential heating purposes. Addo-Binney B; Agelin-Chaab M; Bamfo E; Koohi-Fayegh S Integr Environ Assess Manag; 2022 Mar; 18(2):572-580. PubMed ID: 34273123 [TBL] [Abstract][Full Text] [Related]
2. A comparative environmental life cycle assessment between a condensing boiler and a gas driven absorption heat pump. Famiglietti J; Toppi T; Pistocchini L; Scoccia R; Motta M Sci Total Environ; 2021 Mar; 762():144392. PubMed ID: 33360339 [TBL] [Abstract][Full Text] [Related]
3. The Environmental Consequences of Electrifying Space Heating. Vaishnav P; Fatimah AM Environ Sci Technol; 2020 Aug; 54(16):9814-9823. PubMed ID: 32648744 [TBL] [Abstract][Full Text] [Related]
4. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems. Gadalla MA; Olujic Z; Jansens PJ; Jobson M; Smith R Environ Sci Technol; 2005 Sep; 39(17):6860-70. PubMed ID: 16190250 [TBL] [Abstract][Full Text] [Related]
5. Mitigation of CO2 emissions from the EU-15 building stock: beyond the EU Directive on the Energy Performance of Buildings. Petersdorff C; Boermans T; Harnisch J Environ Sci Pollut Res Int; 2006 Sep; 13(5):350-8. PubMed ID: 17067030 [TBL] [Abstract][Full Text] [Related]
6. The potential of wastewater-source heat pump in decarbonising buildings sector of China. Du Y; Zhang J; Zhong W; Qian H; Han F; Wang H; Zhang L Environ Technol; 2024 Sep; 45(22):4467-4481. PubMed ID: 37651210 [TBL] [Abstract][Full Text] [Related]
7. Life cycle environmental impacts of biogas production and utilisation substituting for grid electricity, natural gas grid and transport fuels. Natividad Pérez-Camacho M; Curry R; Cromie T Waste Manag; 2019 Jul; 95():90-101. PubMed ID: 31351658 [TBL] [Abstract][Full Text] [Related]
8. Life cycle greenhouse gas emissions from U.S. liquefied natural gas exports: implications for end uses. Abrahams LS; Samaras C; Griffin WM; Matthews HS Environ Sci Technol; 2015 Mar; 49(5):3237-45. PubMed ID: 25650513 [TBL] [Abstract][Full Text] [Related]
9. Does it pay to develop a ground source heat pump system? Evidence from China. Zhang T; Zhai Y; Feng S; Tan X; Zhang M; Duan L; Shi Q; Meng J; Hong J J Environ Manage; 2022 Mar; 305():114378. PubMed ID: 34959058 [TBL] [Abstract][Full Text] [Related]
10. Combined Heat and Power May Conflict with Decarbonization Goals-Air Emissions of Natural Gas Combined Cycle Power versus Combined Heat and Power Systems for Commercial Buildings. Broesicke OA; Yan J; Thomas VM; Grubert E; Derrible S; Crittenden JC Environ Sci Technol; 2021 Aug; 55(15):10645-10653. PubMed ID: 34255514 [TBL] [Abstract][Full Text] [Related]
11. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment. Budsberg E; Crawford JT; Morgan H; Chin WS; Bura R; Gustafson R Biotechnol Biofuels; 2016; 9():170. PubMed ID: 27525039 [TBL] [Abstract][Full Text] [Related]
12. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment. Liu C; Huang Y; Wang X; Tai Y; Liu L; Liu H Integr Environ Assess Manag; 2018 Jan; 14(1):139-149. PubMed ID: 28796442 [TBL] [Abstract][Full Text] [Related]
13. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R; Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699 [TBL] [Abstract][Full Text] [Related]
14. Emissions down the drain: Balancing life cycle energy and greenhouse gas savings with resource use for heat recovery from kitchen drains. Schestak I; Spriet J; Styles D; Williams AP J Environ Manage; 2020 Oct; 271():110988. PubMed ID: 32778280 [TBL] [Abstract][Full Text] [Related]
15. A comparative life cycle assessment of centralised and decentralised wood pellets production for residential heating. Quinteiro P; Greco F; da Cruz Tarelho LA; Righi S; Arroja L; Dias AC Sci Total Environ; 2020 Aug; 730():139162. PubMed ID: 32416511 [TBL] [Abstract][Full Text] [Related]
16. Integrated assessment of the environmental and economic effects of "coal-to-gas conversion" project in rural areas of northern China. Li Y; Yuan X; Tang Y; Wang Q; Ma Q; Mu R; Fu J; Hong J; Kellett J; Zuo J Environ Sci Pollut Res Int; 2020 May; 27(13):14503-14514. PubMed ID: 32040743 [TBL] [Abstract][Full Text] [Related]
17. Techno-economic analysis of residential building heating strategies for cost-effective upgrades in European cities. Yu F; Feng W; Luo M; You K; Ma M; Jiang R; Leng J; Sun L iScience; 2023 Sep; 26(9):107541. PubMed ID: 37680479 [TBL] [Abstract][Full Text] [Related]
18. Global Warming Impacts of Residential Electricity Consumption: Agent-Based Modeling of Rooftop Solar Panel Adoption in Los Angeles County, California. Grant CA; Hicks AL Integr Environ Assess Manag; 2020 Nov; 16(6):1008-1018. PubMed ID: 32678946 [TBL] [Abstract][Full Text] [Related]
19. Unburned Methane Emissions from Residential Natural Gas Appliances. Merrin Z; Francisco PW Environ Sci Technol; 2019 May; 53(9):5473-5482. PubMed ID: 30908909 [TBL] [Abstract][Full Text] [Related]
20. Models to predict emissions of health-damaging pollutants and global warming contributions of residential fuel/stove combinations in China. Edwards RD; Smith KR; Zhang J; Ma Y Chemosphere; 2003 Jan; 50(2):201-15. PubMed ID: 12653292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]