BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 34273146)

  • 1. Transfer learning via multi-scale convolutional neural layers for human-virus protein-protein interaction prediction.
    Yang X; Yang S; Lian X; Wuchty S; Zhang Z
    Bioinformatics; 2021 Dec; 37(24):4771-4778. PubMed ID: 34273146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AutoTune: Automatically Tuning Convolutional Neural Networks for Improved Transfer Learning.
    Basha SHS; Vinakota SK; Pulabaigari V; Mukherjee S; Dubey SR
    Neural Netw; 2021 Jan; 133():112-122. PubMed ID: 33181405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer learning for drug-target interaction prediction.
    Dalkıran A; Atakan A; Rifaioğlu AS; Martin MJ; Atalay RÇ; Acar AC; Doğan T; Atalay V
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i103-i110. PubMed ID: 37387156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BACPI: a bi-directional attention neural network for compound-protein interaction and binding affinity prediction.
    Li M; Lu Z; Wu Y; Li Y
    Bioinformatics; 2022 Mar; 38(7):1995-2002. PubMed ID: 35043942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HLA class I binding prediction via convolutional neural networks.
    Vang YS; Xie X
    Bioinformatics; 2017 Sep; 33(17):2658-2665. PubMed ID: 28444127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-attention PHV: Prediction of human and virus protein-protein interactions using cross-attention-based neural networks.
    Tsukiyama S; Kurata H
    Comput Struct Biotechnol J; 2022; 20():5564-5573. PubMed ID: 36249566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network.
    Wang L; You ZH; Huang YA; Huang DS; Chan KCC
    Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CNN-Siam: multimodal siamese CNN-based deep learning approach for drug‒drug interaction prediction.
    Yang Z; Tong K; Jin S; Wang S; Yang C; Jiang F
    BMC Bioinformatics; 2023 Mar; 24(1):110. PubMed ID: 36959539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A learning-based framework for miRNA-disease association identification using neural networks.
    Peng J; Hui W; Li Q; Chen B; Hao J; Jiang Q; Shang X; Wei Z
    Bioinformatics; 2019 Nov; 35(21):4364-4371. PubMed ID: 30977780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the multi-label protein subcellular localization through multi-information fusion and MLSI dimensionality reduction based on MLFE classifier.
    Liu Y; Jin S; Gao H; Wang X; Wang C; Zhou W; Yu B
    Bioinformatics; 2022 Feb; 38(5):1223-1230. PubMed ID: 34864897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DTI-Voodoo: machine learning over interaction networks and ontology-based background knowledge predicts drug-target interactions.
    Hinnerichs T; Hoehndorf R
    Bioinformatics; 2021 Dec; 37(24):4835-4843. PubMed ID: 34320178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SGPPI: structure-aware prediction of protein-protein interactions in rigorous conditions with graph convolutional network.
    Huang Y; Wuchty S; Zhou Y; Zhang Z
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36682013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple convolutional neural network for prediction of enhancer-promoter interactions with DNA sequence data.
    Zhuang Z; Shen X; Pan W
    Bioinformatics; 2019 Sep; 35(17):2899-2906. PubMed ID: 30649185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text.
    Zhu Q; Li X; Conesa A; Pereira C
    Bioinformatics; 2018 May; 34(9):1547-1554. PubMed ID: 29272325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DCSE:Double-Channel-Siamese-Ensemble model for protein protein interaction prediction.
    Chen W; Wang S; Song T; Li X; Han P; Gao C
    BMC Genomics; 2022 Aug; 23(1):555. PubMed ID: 35922751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning-assisted prediction of protein-protein interactions in Arabidopsis thaliana.
    Zheng J; Yang X; Huang Y; Yang S; Wuchty S; Zhang Z
    Plant J; 2023 May; 114(4):984-994. PubMed ID: 36919205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepPhos: prediction of protein phosphorylation sites with deep learning.
    Luo F; Wang M; Liu Y; Zhao XM; Li A
    Bioinformatics; 2019 Aug; 35(16):2766-2773. PubMed ID: 30601936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.