BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 34273410)

  • 1. Early adaptive chromatin remodeling events precede pathologic phenotypes and are reinforced in the failing heart.
    Chapski DJ; Cabaj M; Morselli M; Mason RJ; Soehalim E; Ren S; Pellegrini M; Wang Y; Vondriska TM; Rosa-Garrido M
    J Mol Cell Cardiol; 2021 Nov; 160():73-86. PubMed ID: 34273410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure.
    Rosa-Garrido M; Chapski DJ; Schmitt AD; Kimball TH; Karbassi E; Monte E; Balderas E; Pellegrini M; Shih TT; Soehalim E; Liem D; Ping P; Galjart NJ; Ren S; Wang Y; Ren B; Vondriska TM
    Circulation; 2017 Oct; 136(17):1613-1625. PubMed ID: 28802249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust CTCF-Based Chromatin Architecture Underpins Epigenetic Changes in the Heart Failure Stress-Gene Response.
    Lee DP; Tan WLW; Anene-Nzelu CG; Lee CJM; Li PY; Luu TDA; Chan CX; Tiang Z; Ng SL; Huang X; Efthymios M; Autio MI; Jiang J; Fullwood MJ; Prabhakar S; Lieberman Aiden E; Foo RS
    Circulation; 2019 Apr; 139(16):1937-1956. PubMed ID: 30717603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy.
    Papait R; Cattaneo P; Kunderfranco P; Greco C; Carullo P; Guffanti A; Viganò V; Stirparo GG; Latronico MV; Hasenfuss G; Chen J; Condorelli G
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20164-9. PubMed ID: 24284169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic response to environmental stress: Assembly of BRG1-G9a/GLP-DNMT3 repressive chromatin complex on Myh6 promoter in pathologically stressed hearts.
    Han P; Li W; Yang J; Shang C; Lin CH; Cheng W; Hang CT; Cheng HL; Chen CH; Wong J; Xiong Y; Zhao M; Drakos SG; Ghetti A; Li DY; Bernstein D; Chen HS; Quertermous T; Chang CP
    Biochim Biophys Acta; 2016 Jul; 1863(7 Pt B):1772-81. PubMed ID: 26952936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of cardiac Med1 inhibits RNA polymerase II promoter occupancy and promotes chromatin remodeling.
    Hall DD; Spitler KM; Grueter CE
    Am J Physiol Heart Circ Physiol; 2019 Feb; 316(2):H314-H325. PubMed ID: 30461303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global analysis of histone modifications and long-range chromatin interactions revealed the differential cistrome changes and novel transcriptional players in human dilated cardiomyopathy.
    Liu CF; Abnousi A; Bazeley P; Ni Y; Morley M; Moravec CS; Hu M; Tang WHW
    J Mol Cell Cardiol; 2020 Aug; 145():30-42. PubMed ID: 32533974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.
    Zhao MT; Shao NY; Hu S; Ma N; Srinivasan R; Jahanbani F; Lee J; Zhang SL; Snyder MP; Wu JC
    Circ Res; 2017 Nov; 121(11):1237-1250. PubMed ID: 29030344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth.
    Franklin S; Kimball T; Rasmussen TL; Rosa-Garrido M; Chen H; Tran T; Miller MR; Gray R; Jiang S; Ren S; Wang Y; Tucker HO; Vondriska TM
    Am J Physiol Heart Circ Physiol; 2016 Nov; 311(5):H1234-H1247. PubMed ID: 27663768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systems proteomics of cardiac chromatin identifies nucleolin as a regulator of growth and cellular plasticity in cardiomyocytes.
    Monte E; Mouillesseaux K; Chen H; Kimball T; Ren S; Wang Y; Chen JN; Vondriska TM; Franklin S
    Am J Physiol Heart Circ Physiol; 2013 Dec; 305(11):H1624-38. PubMed ID: 24077883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin modifications remodel cardiac gene expression.
    Mathiyalagan P; Keating ST; Du XJ; El-Osta A
    Cardiovasc Res; 2014 Jul; 103(1):7-16. PubMed ID: 24812277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure.
    Greco CM; Condorelli G
    Nat Rev Cardiol; 2015 Aug; 12(8):488-97. PubMed ID: 25962978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vivo Dissection of Chamber-Selective Enhancers Reveals Estrogen-Related Receptor as a Regulator of Ventricular Cardiomyocyte Identity.
    Cao Y; Zhang X; Akerberg BN; Yuan H; Sakamoto T; Xiao F; VanDusen NJ; Zhou P; Sweat ME; Wang Y; Prondzynski M; Chen J; Zhang Y; Wang P; Kelly DP; Pu WT
    Circulation; 2023 Mar; 147(11):881-896. PubMed ID: 36705030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BET bromodomains mediate transcriptional pause release in heart failure.
    Anand P; Brown JD; Lin CY; Qi J; Zhang R; Artero PC; Alaiti MA; Bullard J; Alazem K; Margulies KB; Cappola TP; Lemieux M; Plutzky J; Bradner JE; Haldar SM
    Cell; 2013 Aug; 154(3):569-82. PubMed ID: 23911322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats.
    Stenzig J; Schneeberger Y; Löser A; Peters BS; Schaefer A; Zhao RR; Ng SL; Höppner G; Geertz B; Hirt MN; Tan W; Wong E; Reichenspurner H; Foo RS; Eschenhagen T
    J Mol Cell Cardiol; 2018 Jul; 120():53-63. PubMed ID: 29792884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HDAC inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes.
    Ooi JY; Tuano NK; Rafehi H; Gao XM; Ziemann M; Du XJ; El-Osta A
    Epigenetics; 2015; 10(5):418-30. PubMed ID: 25941940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Dynamic Chromatin Architecture of the Regenerating Liver.
    Wang AW; Wang YJ; Zahm AM; Morgan AR; Wangensteen KJ; Kaestner KH
    Cell Mol Gastroenterol Hepatol; 2020; 9(1):121-143. PubMed ID: 31629814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic switch at atp2a2 and myh7 gene promoters in pressure overload-induced heart failure.
    Angrisano T; Schiattarella GG; Keller S; Pironti G; Florio E; Magliulo F; Bottino R; Pero R; Lembo F; Avvedimento EV; Esposito G; Trimarco B; Chiariotti L; Perrino C
    PLoS One; 2014; 9(9):e106024. PubMed ID: 25181347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of histone H3 phosphorylation by CaMKIIδ in response to haemodynamic cardiac stress.
    Awad S; Al-Haffar KM; Marashly Q; Quijada P; Kunhi M; Al-Yacoub N; Wade FS; Mohammed SF; Al-Dayel F; Sutherland G; Assiri A; Sussman M; Bers D; Al-Habeeb W; Poizat C
    J Pathol; 2015 Mar; 235(4):606-18. PubMed ID: 25421395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of the chromatin remodeling factor DPF3a induces cardiac hypertrophy through releasing HEY repressors from DNA.
    Cui H; Schlesinger J; Schoenhals S; Tönjes M; Dunkel I; Meierhofer D; Cano E; Schulz K; Berger MF; Haack T; Abdelilah-Seyfried S; Bulyk ML; Sauer S; Sperling SR
    Nucleic Acids Res; 2016 Apr; 44(6):2538-53. PubMed ID: 26582913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.