These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34273441)

  • 61. Role of in silico genotoxicity tools in the regulatory assessment of pharmaceutical impurities.
    Fioravanzo E; Bassan A; Pavan M; Mostrag-Szlichtyng A; Worth AP
    SAR QSAR Environ Res; 2012; 23(3-4):257-77. PubMed ID: 22369620
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Integrated approach to assess the domain of applicability of some commercial (Q)SAR models.
    Kulkarni SA; Zhu J
    SAR QSAR Environ Res; 2008; 19(1-2):39-54. PubMed ID: 18311633
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Assessment of methods to define the applicability domain of structural alert models.
    Ellison CM; Sherhod R; Cronin MT; Enoch SJ; Madden JC; Judson PN
    J Chem Inf Model; 2011 May; 51(5):975-85. PubMed ID: 21488656
    [TBL] [Abstract][Full Text] [Related]  

  • 64. In Silico Approaches in Predictive Genetic Toxicology.
    Sinha M; Dhawan A; Parthasarathi R
    Methods Mol Biol; 2019; 2031():351-373. PubMed ID: 31473971
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Integration of structure-activity relationship and artificial intelligence systems to improve in silico prediction of ames test mutagenicity.
    Mazzatorta P; Tran LA; Schilter B; Grigorov M
    J Chem Inf Model; 2007; 47(1):34-8. PubMed ID: 17238246
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Integrated strategy for mutagenicity prediction applied to food contact chemicals.
    Manganelli S; Schilter B; Benfenati E; Manganaro A; Lo Piparo E
    ALTEX; 2018; 35(2):169-178. PubMed ID: 28922667
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The expanding role of predictive toxicology: an update on the (Q)SAR models for mutagens and carcinogens.
    Benigni R; Netzeva TI; Benfenati E; Bossa C; Franke R; Helma C; Hulzebos E; Marchant C; Richard A; Woo YT; Yang C
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2007; 25(1):53-97. PubMed ID: 17365342
    [TBL] [Abstract][Full Text] [Related]  

  • 68. (Q)SAR: A Tool for the Toxicologist.
    Steinbach T; Gad-McDonald S; Kruhlak N; Powley M; Greene N
    Int J Toxicol; 2015; 34(4):352-4. PubMed ID: 25979517
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mutagenicity in a Molecule: Identification of Core Structural Features of Mutagenicity Using a Scaffold Analysis.
    Hsu KH; Su BH; Tu YS; Lin OA; Tseng YJ
    PLoS One; 2016; 11(2):e0148900. PubMed ID: 26863515
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Analytical Method Development for 19 Alkyl Halides as Potential Genotoxic Impurities by Analytical Quality by Design.
    Lee K; Yoo W; Jeong JH
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889310
    [TBL] [Abstract][Full Text] [Related]  

  • 71. 2-Hydroxypyridine-N-oxide (HOPO): Equivocal in the ames assay.
    Dobo KL; Cheung JR; Gunther WC; Kenyon MO
    Environ Mol Mutagen; 2018 May; 59(4):312-321. PubMed ID: 29481708
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Predicting Ames Mutagenicity Using Conformal Prediction in the Ames/QSAR International Challenge Project.
    Norinder U; Ahlberg E; Carlsson L
    Mutagenesis; 2019 Mar; 34(1):33-40. PubMed ID: 30541036
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Prediction of mutagenicity, carcinogenicity, developmental toxicity, and skin sensitisation with Caesar program for a set of conazoles.
    Bolčič-Tavčar M; Vračko M
    Arh Hig Rada Toksikol; 2012 Sep; 63(3):283-92. PubMed ID: 23152378
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Density Functional Theory Transition-State Modeling for the Prediction of Ames Mutagenicity in 1,4 Michael Acceptors.
    Townsend PA; Grayson MN
    J Chem Inf Model; 2019 Dec; 59(12):5099-5103. PubMed ID: 31774671
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Management of organic impurities in small molecule medicinal products: Deriving safe limits for use in early development.
    Harvey J; Fleetwood A; Ogilvie R; Teasdale A; Wilcox P; Spanhaak S
    Regul Toxicol Pharmacol; 2017 Mar; 84():116-123. PubMed ID: 28038978
    [TBL] [Abstract][Full Text] [Related]  

  • 76. (Q)SAR tools for priority setting: A case study with printed paper and board food contact material substances.
    Van Bossuyt M; Van Hoeck E; Raitano G; Manganelli S; Braeken E; Ates G; Vanhaecke T; Van Miert S; Benfenati E; Mertens B; Rogiers V
    Food Chem Toxicol; 2017 Apr; 102():109-119. PubMed ID: 28163056
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparison of the computer programs DEREK and TOPKAT to predict bacterial mutagenicity. Deductive Estimate of Risk from Existing Knowledge. Toxicity Prediction by Komputer Assisted Technology.
    Cariello NF; Wilson JD; Britt BH; Wedd DJ; Burlinson B; Gombar V
    Mutagenesis; 2002 Jul; 17(4):321-9. PubMed ID: 12110629
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The application of structure-based assessment to support safety and chemistry diligence to manage genotoxic impurities in active pharmaceutical ingredients during drug development.
    Dobo KL; Greene N; Cyr MO; Caron S; Ku WW
    Regul Toxicol Pharmacol; 2006 Apr; 44(3):282-93. PubMed ID: 16464524
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Are all nitrosamines concerning? A review of mutagenicity and carcinogenicity data.
    Thresher A; Foster R; Ponting DJ; Stalford SA; Tennant RE; Thomas R
    Regul Toxicol Pharmacol; 2020 Oct; 116():104749. PubMed ID: 32777431
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Determination of the impurities in drug products containing montelukast and in silico/in vitro genotoxicological assessments of sulfoxide impurity.
    Emerce E; Cok I; Degim IT
    Toxicol Lett; 2015 Oct; 238(2):90-9. PubMed ID: 26205398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.