These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34273441)

  • 81. Screening for Ames mutagenicity of food flavor chemicals by (quantitative) structure-activity relationship.
    Honma M; Kitazawa A; Kasamatsu T; Sugiyama KI
    Genes Environ; 2020 Nov; 42(1):32. PubMed ID: 33292765
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Validation of the (Q)SAR combination approach for mutagenicity prediction of flavor chemicals.
    Ono A; Takahashi M; Hirose A; Kamata E; Kawamura T; Yamazaki T; Sato K; Yamada M; Fukumoto T; Okamura H; Mirokuji Y; Honma M
    Food Chem Toxicol; 2012 May; 50(5):1538-46. PubMed ID: 22369964
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Performance of In Silico Models for Mutagenicity Prediction of Food Contact Materials.
    Van Bossuyt M; Van Hoeck E; Raitano G; Vanhaecke T; Benfenati E; Mertens B; Rogiers V
    Toxicol Sci; 2018 Jun; 163(2):632-638. PubMed ID: 29579255
    [TBL] [Abstract][Full Text] [Related]  

  • 84. In Silico Prediction of Chemically Induced Mutagenicity: How to Use QSAR Models and Interpret Their Results.
    Mombelli E; Raitano G; Benfenati E
    Methods Mol Biol; 2016; 1425():87-105. PubMed ID: 27311463
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Characterization and validation of an in silico toxicology model to predict the mutagenic potential of drug impurities.
    Valerio LG; Cross KP
    Toxicol Appl Pharmacol; 2012 May; 260(3):209-21. PubMed ID: 22426359
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Perspectives from the NanoSafety Modelling Cluster on the validation criteria for (Q)SAR models used in nanotechnology.
    Puzyn T; Jeliazkova N; Sarimveis H; Marchese Robinson RL; Lobaskin V; Rallo R; Richarz AN; Gajewicz A; Papadopulos MG; Hastings J; Cronin MTD; Benfenati E; Fernández A
    Food Chem Toxicol; 2018 Feb; 112():478-494. PubMed ID: 28943385
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A large comparison of integrated SAR/QSAR models of the Ames test for mutagenicity
    Benfenati E; Golbamaki A; Raitano G; Roncaglioni A; Manganelli S; Lemke F; Norinder U; Lo Piparo E; Honma M; Manganaro A; Gini G
    SAR QSAR Environ Res; 2018 Aug; 29(8):591-611. PubMed ID: 30052064
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A risk classification strategy for migrants of food contact material combined with three (Q)SAR tools in silico.
    Ma X; Sui H; Sun X; Ali MM; Debrah AA; Du Z
    J Hazard Mater; 2021 Oct; 419():126422. PubMed ID: 34182426
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Designing safer drugs: (Q)SAR-based identification of mutagens and carcinogens.
    Benigni R; Zito R
    Curr Top Med Chem; 2003; 3(11):1289-300. PubMed ID: 12769706
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The application of structure-activity relationships to the prediction of the mutagenic activity of chemicals.
    Judson P
    Methods Mol Biol; 2012; 817():1-19. PubMed ID: 22147565
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Towards quantitative read across: Prediction of Ames mutagenicity in a large database.
    Benigni R
    Regul Toxicol Pharmacol; 2019 Nov; 108():104434. PubMed ID: 31374229
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Random forest prediction of mutagenicity from empirical physicochemical descriptors.
    Zhang QY; Aires-de-Sousa J
    J Chem Inf Model; 2007; 47(1):1-8. PubMed ID: 17238242
    [TBL] [Abstract][Full Text] [Related]  

  • 93. (Q)SAR Methods for Predicting Genotoxicity and Carcinogenicity: Scientific Rationale and Regulatory Frameworks.
    Bossa C; Benigni R; Tcheremenskaia O; Battistelli CL
    Methods Mol Biol; 2018; 1800():447-473. PubMed ID: 29934905
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Evaluation of a statistics-based Ames mutagenicity QSAR model and interpretation of the results obtained.
    Barber C; Cayley A; Hanser T; Harding A; Heghes C; Vessey JD; Werner S; Weiner SK; Wichard J; Giddings A; Glowienke S; Parenty A; Brigo A; Spirkl HP; Amberg A; Kemper R; Greene N
    Regul Toxicol Pharmacol; 2016 Apr; 76():7-20. PubMed ID: 26708083
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Computational identification of structural factors affecting the mutagenic potential of aromatic amines: study design and experimental validation.
    Slavov SH; Stoyanova-Slavova I; Mattes W; Beger RD; Brüschweiler BJ
    Arch Toxicol; 2018 Jul; 92(7):2369-2384. PubMed ID: 29779177
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Structure-activity relationship models for rat carcinogenesis and assessing the role mutagens play in model predictivity.
    Carrasquer CA; Batey K; Qamar S; Cunningham AR; Cunningham SL
    SAR QSAR Environ Res; 2014; 25(6):489-506. PubMed ID: 24697549
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Reactivity prediction in aza-Michael additions without transition state calculations: the Ames test for mutagenicity.
    Townsend PA; Grayson MN
    Chem Commun (Camb); 2020 Nov; 56(88):13661-13664. PubMed ID: 33073273
    [TBL] [Abstract][Full Text] [Related]  

  • 98. In Silico Methods for Carcinogenicity Assessment.
    Golbamaki A; Benfenati E
    Methods Mol Biol; 2016; 1425():107-19. PubMed ID: 27311464
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Chemical structure of mutagens and carcinogens and the relationship with biological activity.
    Benigni R
    J Exp Clin Cancer Res; 2004 Mar; 23(1):5-8. PubMed ID: 15149144
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Comparison of in silico models for prediction of mutagenicity.
    Bakhtyari NG; Raitano G; Benfenati E; Martin T; Young D
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2013; 31(1):45-66. PubMed ID: 23534394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.