These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34273487)

  • 1. Design, synthesis, and functional evaluation of triazine-based bivalent agents that simultaneously target the active site and hot spot of phosphatase Cdc25B.
    Nagaoka Y; Parvatkar P; Hirai G; Ohkanda J
    Bioorg Med Chem Lett; 2021 Sep; 48():128265. PubMed ID: 34273487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and synthesis of novel bis-thiazolone derivatives as micromolar CDC25 phosphatase inhibitors: effect of dimerisation on phosphatase inhibition.
    Sarkis M; Tran DN; Kolb S; Miteva MA; Villoutreix BO; Garbay C; Braud E
    Bioorg Med Chem Lett; 2012 Dec; 22(24):7345-50. PubMed ID: 23141909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The design of novel inhibitors for treating cancer by targeting CDC25B through disruption of CDC25B-CDK2/Cyclin A interaction using computational approaches.
    Li HL; Ma Y; Ma Y; Li Y; Chen XB; Dong WL; Wang RL
    Oncotarget; 2017 May; 8(20):33225-33240. PubMed ID: 28402259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based virtual screening approach to identify novel classes of Cdc25B phosphatase inhibitors.
    Park H; Li M; Choi J; Cho H; Ham SW
    Bioorg Med Chem Lett; 2009 Aug; 19(15):4372-5. PubMed ID: 19500977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and biological evaluation of novel thiadiazole amides as potent Cdc25B and PTP1B inhibitors.
    Li Y; Yu Y; Jin K; Gao L; Luo T; Sheng L; Shao X; Li J
    Bioorg Med Chem Lett; 2014 Sep; 24(17):4125-8. PubMed ID: 25124112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The C-terminal tail of the dual-specificity Cdc25B phosphatase mediates modular substrate recognition.
    Wilborn M; Free S; Ban A; Rudolph J
    Biochemistry; 2001 Nov; 40(47):14200-6. PubMed ID: 11714273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of CDC25B phosphatase through disruption of protein-protein interaction.
    Lund G; Dudkin S; Borkin D; Ni W; Grembecka J; Cierpicki T
    ACS Chem Biol; 2015 Feb; 10(2):390-4. PubMed ID: 25423142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental validation of the docking orientation of Cdc25 with its Cdk2-CycA protein substrate.
    Sohn J; Parks JM; Buhrman G; Brown P; Kristjánsdóttir K; Safi A; Edelsbrunner H; Yang W; Rudolph J
    Biochemistry; 2005 Dec; 44(50):16563-73. PubMed ID: 16342947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and biological evaluation of 3-aminoisoquinolin-1(2H)-one based inhibitors of the dual-specificity phosphatase Cdc25B.
    George Rosenker KM; Paquette WD; Johnston PA; Sharlow ER; Vogt A; Bakan A; Lazo JS; Wipf P
    Bioorg Med Chem; 2015 Jun; 23(12):2810-8. PubMed ID: 25703307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of novel thiazolopyrimidines as CDC25B phosphatase inhibitors.
    Kolb S; Mondésert O; Goddard ML; Jullien D; Villoutreix BO; Ducommun B; Garbay C; Braud E
    ChemMedChem; 2009 Apr; 4(4):633-48. PubMed ID: 19212959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, synthesis, and biological evaluation of novel naphthoquinone derivatives with CDC25 phosphatase inhibitory activity.
    Brun MP; Braud E; Angotti D; Mondésert O; Quaranta M; Montes M; Miteva M; Gresh N; Ducommun B; Garbay C
    Bioorg Med Chem; 2005 Aug; 13(16):4871-9. PubMed ID: 15921913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design novel inhibitors for treating cancer by targeting Cdc25B catalytic domain with de novo design.
    Wu JW; Zhang H; Duan YQ; Dong WL; Cheng XC; Wang SQ; Wang RL
    Comb Chem High Throughput Screen; 2014; 17(10):837-47. PubMed ID: 25360618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational design, synthesis and biological evaluation of para-quinone-based inhibitors for redox regulation of the dual-specificity phosphatase Cdc25B.
    Keinan S; Paquette WD; Skoko JJ; Beratan DN; Yang W; Shinde S; Johnston PA; Lazo JS; Wipf P
    Org Biomol Chem; 2008 Sep; 6(18):3256-63. PubMed ID: 18802630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based development of novel triazoles and related thiazolotriazoles as anticancer agents and Cdc25A/B phosphatase inhibitors. Synthesis, in vitro biological evaluation, molecular docking and in silico ADME-T studies.
    Rostom SAF; Badr MH; Abd El Razik HA; Ashour HMA
    Eur J Med Chem; 2017 Oct; 139():263-279. PubMed ID: 28803043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The catalytic acid in the dephosphorylation of the Cdk2-pTpY/CycA protein complex by Cdc25B phosphatase.
    Arantes GM
    J Phys Chem B; 2008 Nov; 112(47):15244-7. PubMed ID: 18980372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D QSAR Pharmacophore Based Virtual Screening for Identification of Potential Inhibitors for CDC25B.
    Ma Y; Li HL; Chen XB; Jin WY; Zhou H; Ma Y; Wang RL
    Comput Biol Chem; 2018 Apr; 73():1-12. PubMed ID: 29413811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and synthesis of macrocyclic inhibitors of phosphatase cdc25B.
    Bäurle S; Blume T; Günther J; Henschel D; Hillig RC; Husemann M; Mengel A; Parchmann C; Schmid E; Skuballa W
    Bioorg Med Chem Lett; 2004 Apr; 14(7):1673-7. PubMed ID: 15026048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arylstibonic acids are potent and isoform-selective inhibitors of Cdc25a and Cdc25b phosphatases.
    Mak LH; Knott J; Scott KA; Scott C; Whyte GF; Ye Y; Mann DJ; Ces O; Stivers J; Woscholski R
    Bioorg Med Chem; 2012 Jul; 20(14):4371-6. PubMed ID: 22705189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of new inhibitors of Cdc25B dual specificity phosphatases by structure-based virtual screening.
    Lavecchia A; Di Giovanni C; Pesapane A; Montuori N; Ragno P; Martucci NM; Masullo M; De Vendittis E; Novellino E
    J Med Chem; 2012 May; 55(9):4142-58. PubMed ID: 22524450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell cycle.
    Reynolds RA; Yem AW; Wolfe CL; Deibel MR; Chidester CG; Watenpaugh KD
    J Mol Biol; 1999 Oct; 293(3):559-68. PubMed ID: 10543950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.