These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 34273769)
1. Using molecular detection for the diversity and occurrence of cyanobacteria and 2-methylisoborneol-producing cyanobacteria in an eutrophicated reservoir in northern China. Qiu P; Chen Y; Li C; Huo D; Bi Y; Wang J; Li Y; Li R; Yu G Environ Pollut; 2021 Nov; 288():117772. PubMed ID: 34273769 [TBL] [Abstract][Full Text] [Related]
2. Quantitative PCR based detection system for cyanobacterial geosmin/2-methylisoborneol (2-MIB) events in drinking water sources: Current status and challenges. Devi A; Chiu YT; Hsueh HT; Lin TF Water Res; 2021 Jan; 188():116478. PubMed ID: 33045635 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the MIB-producing potential based on real-time qPCR in drinking water reservoirs. Suruzzaman M; Cao T; Lu J; Wang Y; Su M; Yang M Environ Res; 2022 Mar; 204(Pt C):112308. PubMed ID: 34757030 [TBL] [Abstract][Full Text] [Related]
4. MIB-producing cyanobacteria (Planktothrix sp.) in a drinking water reservoir: distribution and odor producing potential. Su M; Yu J; Zhang J; Chen H; An W; Vogt RD; Andersen T; Jia D; Wang J; Yang M Water Res; 2015 Jan; 68():444-53. PubMed ID: 25462751 [TBL] [Abstract][Full Text] [Related]
5. Spatial and temporal dynamics of microbes and genes in drinking water reservoirs: Distribution and potential for taste and odor generation. Zhangsun X; Guo H; Du Q; Li N; Xue S; Li R; Ma W; Liu X; Zhang H; Huang T J Hazard Mater; 2024 Nov; 479():135708. PubMed ID: 39217936 [TBL] [Abstract][Full Text] [Related]
6. Elucidation of Taste- and Odor-Producing Bacteria and Toxigenic Cyanobacteria in a Midwestern Drinking Water Supply Reservoir by Shotgun Metagenomic Analysis. Otten TG; Graham JL; Harris TD; Dreher TW Appl Environ Microbiol; 2016 Sep; 82(17):5410-20. PubMed ID: 27342564 [TBL] [Abstract][Full Text] [Related]
7. The predominant phytoplankton of Pseudoanabaena holding specific biosynthesis gene-derived occurrence of 2-MIB in a drinking water reservoir. Huang X; Huang Z; Chen XP; Zhang D; Zhou J; Wang X; Gao N Environ Sci Pollut Res Int; 2018 Jul; 25(19):19134-19142. PubMed ID: 29725924 [TBL] [Abstract][Full Text] [Related]
8. An alternative method to quantify 2-MIB producing cyanobacteria in drinking water reservoirs: Method development and field applications. Chiu YT; Yen HK; Lin TF Environ Res; 2016 Nov; 151():618-627. PubMed ID: 27607443 [TBL] [Abstract][Full Text] [Related]
9. Molecular Probes to Evaluate the Synthesis and Production Potential of an Odorous Compound (2-methylisoborneol) in Cyanobacteria. Kim K; Yoon Y; Cho H; Hwang SJ Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32188031 [TBL] [Abstract][Full Text] [Related]
10. Biosynthesis of 2-methylisoborneol in cyanobacteria. Giglio S; Chou WK; Ikeda H; Cane DE; Monis PT Environ Sci Technol; 2011 Feb; 45(3):992-8. PubMed ID: 21174459 [TBL] [Abstract][Full Text] [Related]
11. Early warning of MIB episode based on gene abundance and expression in drinking water reservoirs. Cao T; Fang J; Jia Z; Zhu Y; Su M; Zhang Q; Song Y; Yu J; Yang M Water Res; 2023 Mar; 231():119667. PubMed ID: 36724724 [TBL] [Abstract][Full Text] [Related]
12. Occurrence and phylogenetic analysis of Pseudanabaena sp. producing 2-methylisoborneol in drinking water source of South Korea. Lee JE; Yu MN; Yu S; Byeon M Environ Microbiol Rep; 2022 Apr; 14(2):197-202. PubMed ID: 34837342 [TBL] [Abstract][Full Text] [Related]
13. Spatiotemporal dynamics of 2-methylisoborneol produced by filamentous cyanobacteria and associated driving factors in Lake Taihu, China. Wu D; Chen M; Shen A; Shi Y Harmful Algae; 2024 Sep; 138():102703. PubMed ID: 39244238 [TBL] [Abstract][Full Text] [Related]
14. Distribution, driving forces, and risk assessment of 2-MIB and its producer in a drinking water source-oriented shallow lake. Shi X; Huang Q; Shen X; Wu J; Nan J; Li J; Lu H; Yang C Environ Sci Pollut Res Int; 2023 Jun; 30(27):71194-71208. PubMed ID: 37162675 [TBL] [Abstract][Full Text] [Related]
15. Contrasting patterns of 2-methylisoborneol (MIB) vs. geosmin across depth in a drinking water reservoir are mediated by cyanobacteria and actinobacteria. Chislock MF; Olsen BK; Choi J; Abebe A; Bleier TL; Wilson AE Environ Sci Pollut Res Int; 2021 Jun; 28(24):32005-32014. PubMed ID: 33620686 [TBL] [Abstract][Full Text] [Related]
16. Light as a possible regulator of MIB-producing Planktothrix in source water reservoir, mechanism and in-situ verification. Jia Z; Su M; Liu T; Guo Q; Wang Q; Burch M; Yu J; Yang M Harmful Algae; 2019 Sep; 88():101658. PubMed ID: 31582162 [TBL] [Abstract][Full Text] [Related]
17. Identification of MIB producers and odor risk assessment using routine data: A case study of an estuary drinking water reservoir. Su M; Zhu Y; Jia Z; Liu T; Yu J; Burch M; Yang M Water Res; 2021 Mar; 192():116848. PubMed ID: 33524635 [TBL] [Abstract][Full Text] [Related]
18. qPCR-Based Monitoring of 2-Methylisoborneol/Geosmin-Producing Cyanobacteria in Drinking Water Reservoirs in South Korea. Lee JE; Park R; Yu M; Byeon M; Kang T Microorganisms; 2023 Sep; 11(9):. PubMed ID: 37764175 [TBL] [Abstract][Full Text] [Related]
19. Ecological niche and in-situ control of MIB producers in source water. Su M; Suruzzaman MD; Zhu Y; Lu J; Yu J; Zhang Y; Yang M J Environ Sci (China); 2021 Dec; 110():119-128. PubMed ID: 34593182 [TBL] [Abstract][Full Text] [Related]
20. Temperature affects growth, geosmin/2-methylisoborneol production, and gene expression in two cyanobacterial species. Shen Q; Wang Q; Miao H; Shimada M; Utsumi M; Lei Z; Zhang Z; Nishimura O; Asada Y; Fujimoto N; Takanashi H; Akiba M; Shimizu K Environ Sci Pollut Res Int; 2022 Feb; 29(8):12017-12026. PubMed ID: 34558048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]