These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 34273774)

  • 21. The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces.
    Brusseau ML; Van Glubt S
    Water Res; 2019 Sep; 161():17-26. PubMed ID: 31174056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of methods to estimate air-water interfacial areas for evaluating PFAS transport in the vadose zone.
    Silva JAK; Šimůnek J; McCray JE
    J Contam Hydrol; 2022 May; 247():103984. PubMed ID: 35279485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface.
    Brusseau ML
    Sci Total Environ; 2018 Feb; 613-614():176-185. PubMed ID: 28915454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repeated Aqueous Film-Forming Foams Applications: Impacts on Polyfluoroalkyl Substances Retention in Saturated Soil.
    Wanzek TA; Field JA; Kostarelos K
    Environ Sci Technol; 2024 Jan; 58(3):1659-1668. PubMed ID: 38198694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PFAS concentrations in soil versus soil porewater: Mass distributions and the impact of adsorption at air-water interfaces.
    Brusseau ML; Guo B
    Chemosphere; 2022 Sep; 302():134938. PubMed ID: 35568214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Testing the Validity of the Miscible-Displacement Interfacial Tracer Method for Measuring Air-Water Interfacial Area: Independent Benchmarking and Mathematical Modeling.
    El Ouni A; Guo B; Zhong H; Brusseau ML
    Chemosphere; 2021 Jan; 263():128193. PubMed ID: 33184521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of molecular structure on PFAS adsorption at air-water interfaces in electrolyte solutions.
    Brusseau ML; Van Glubt S
    Chemosphere; 2021 Oct; 281():130829. PubMed ID: 33992851
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting Interfacial Tension and Adsorption at Fluid-Fluid Interfaces for Mixtures of PFAS and/or Hydrocarbon Surfactants.
    Guo B; Saleem H; Brusseau ML
    Environ Sci Technol; 2023 May; 57(21):8044-8052. PubMed ID: 37204869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling 1-D aqueous film forming foam transport through the vadose zone under realistic site and release conditions.
    Arshadi M; Garza-Rubalcava U; Guedes A; Cápiro NL; Pennell KD; Christ J; Abriola LM
    Sci Total Environ; 2024 Apr; 919():170566. PubMed ID: 38331271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Retention and transport of PFOA and its fluorinated substitute, GenX, through water-saturated soil columns.
    Liu G; Usman M; Luo T; Biard PF; Lin K; Greenwell HC; Hanna K
    Environ Pollut; 2023 Nov; 337():122530. PubMed ID: 37690470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leaching and transport of PFAS from aqueous film-forming foam (AFFF) in the unsaturated soil at a firefighting training facility under cold climatic conditions.
    Høisæter Å; Pfaff A; Breedveld GD
    J Contam Hydrol; 2019 Apr; 222():112-122. PubMed ID: 30878240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Examining the robustness and concentration dependency of PFAS air-water and NAPL-water interfacial adsorption coefficients.
    Brusseau ML
    Water Res; 2021 Feb; 190():116778. PubMed ID: 33387950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Column versus batch methods for measuring PFOS and PFOA sorption to geomedia.
    Van Glubt S; Brusseau ML; Yan N; Huang D; Khan N; Carroll KC
    Environ Pollut; 2021 Jan; 268(Pt B):115917. PubMed ID: 33143983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A systematic investigation of single solute, binary and ternary PFAS transport in water-saturated soil using batch and 1-dimensional column studies: Focus on mixture effects.
    Umeh AC; Naidu R; Olisa E; Liu Y; Qi F; Bekele D
    J Hazard Mater; 2024 Jan; 461():132688. PubMed ID: 37797575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uptake of Poly- and Perfluoroalkyl Substances at the Air-Water Interface.
    Schaefer CE; Culina V; Nguyen D; Field J
    Environ Sci Technol; 2019 Nov; 53(21):12442-12448. PubMed ID: 31577432
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of sub-lethal metabolic perturbations of select legacy and novel perfluorinated alkyl substances (PFAS) in Daphnia magna.
    Labine LM; Oliveira Pereira EA; Kleywegt S; Jobst KJ; Simpson AJ; Simpson MJ
    Environ Res; 2022 Sep; 212(Pt D):113582. PubMed ID: 35661729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigating rate-limited sorption, sorption to air-water interfaces, and colloid-facilitated transport during PFAS leaching.
    Bierbaum T; Hansen SK; Poudel B; Haslauer C
    Environ Sci Pollut Res Int; 2023 Dec; 30(58):121529-121547. PubMed ID: 37957494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulated leaching of PFAS from land-applied municipal biosolids at agricultural sites.
    Silva JAK; Guelfo JL; Šimůnek J; McCray JE
    J Contam Hydrol; 2022 Dec; 251():104089. PubMed ID: 36223689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Mathematical Model for the Release, Transport, and Retention of Per- and Polyfluoroalkyl Substances (PFAS) in the Vadose Zone.
    Guo B; Zeng J; Brusseau ML
    Water Resour Res; 2020 Feb; 56(2):. PubMed ID: 33223573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Factors Affecting the Adsorption of Per- and Polyfluoroalkyl Substances (PFAS) by Colloidal Activated Carbon.
    Hakimabadi SG; Taylor A; Pham AL
    Water Res; 2023 Aug; 242():120212. PubMed ID: 37336180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.