These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 34273774)
41. Multicomponent and Surface Charge Effects on PFOS Sorption and Transport in Goethite-Coated Porous Media under Variable Hydrochemical Conditions. Cogorno J; Rolle M Environ Sci Technol; 2024 Aug; 58(31):13866-13878. PubMed ID: 39037862 [TBL] [Abstract][Full Text] [Related]
42. Importance of surface roughness on perfluorooctanoic acid (PFOA) transport in unsaturated porous media. Lyu X; Liu X; Sun Y; Gao B; Ji R; Wu J; Xue Y Environ Pollut; 2020 Nov; 266(Pt 1):115343. PubMed ID: 32814265 [TBL] [Abstract][Full Text] [Related]
43. Release of soil colloids during flow interruption increases the pore-water PFAS concentration in saturated soil. Borthakur A; Cranmer BK; Dooley GP; Blotevogel J; Mahendra S; Mohanty SK Environ Pollut; 2021 Oct; 286():117297. PubMed ID: 33971474 [TBL] [Abstract][Full Text] [Related]
44. Model-based identification of vadose zone controls on PFAS mobility under semi-arid climate conditions. Wallis I; Hutson J; Davis G; Kookana R; Rayner J; Prommer H Water Res; 2022 Oct; 225():119096. PubMed ID: 36162294 [TBL] [Abstract][Full Text] [Related]
45. Air-water interfacial adsorption coefficients for PFAS when present as a multi-component mixture. Silva JAK; Martin WA; McCray JE J Contam Hydrol; 2021 Jan; 236():103731. PubMed ID: 33183849 [TBL] [Abstract][Full Text] [Related]
46. Perfluoroalkylated substances (PFAS) affect neither estrogen and androgen receptor activity nor steroidogenesis in human cells in vitro. Behr AC; Lichtenstein D; Braeuning A; Lampen A; Buhrke T Toxicol Lett; 2018 Jul; 291():51-60. PubMed ID: 29601859 [TBL] [Abstract][Full Text] [Related]
47. Importance of Al/Fe oxyhydroxide coating and ionic strength in perfluorooctanoic acid (PFOA) transport in saturated porous media. Lyu X; Liu X; Wu X; Sun Y; Gao B; Wu J Water Res; 2020 May; 175():115685. PubMed ID: 32172055 [TBL] [Abstract][Full Text] [Related]
48. Correlates of plasma concentrations of per- and poly-fluoroalkyl substances among reproductive-aged Black women. Wise LA; Wesselink AK; Schildroth S; Calafat AM; Bethea TN; Geller RJ; Coleman CM; Fruh V; Claus Henn B; Botelho JC; Harmon QE; Thirkill M; Wegienka GR; Baird DD Environ Res; 2022 Jan; 203():111860. PubMed ID: 34403666 [TBL] [Abstract][Full Text] [Related]
49. Antibody response to COVID-19 vaccines among workers with a wide range of exposure to per- and polyfluoroalkyl substances. Porter AK; Kleinschmidt SE; Andres KL; Reusch CN; Krisko RM; Taiwo OA; Olsen GW; Longnecker MP Environ Int; 2022 Nov; 169():107537. PubMed ID: 36183490 [TBL] [Abstract][Full Text] [Related]
50. Identifying Human Specific Adverse Outcome Pathways of Per- and Polyfluoroalkyl Substances Using Liver-Chimeric Humanized Mice. Robarts DR; Paine-Cabrera D; Kotulkar M; Venneman KK; Gunewardena S; Corton JC; Lau C; Foquet L; Bial G; Apte U bioRxiv; 2023 Feb; ():. PubMed ID: 36778348 [TBL] [Abstract][Full Text] [Related]
51. Calculating PFAS interfacial adsorption as a function of salt concentration using model parameters determined from chemical structure. Le ST; Gao Y; Kibbey TCG; O'Carroll DM Sci Total Environ; 2022 Nov; 848():157663. PubMed ID: 35907553 [TBL] [Abstract][Full Text] [Related]
52. Transport of PFOS in aquifer sediment: Transport behavior and a distributed-sorption model. Wang Y; Khan N; Huang D; Carroll KC; Brusseau ML Sci Total Environ; 2021 Jul; 779():146444. PubMed ID: 33740555 [TBL] [Abstract][Full Text] [Related]
53. Estimation of Transport Parameters of Perfluoroalkyl Acids (PFAAs) in Unsaturated Porous Media: Critical Experimental and Modeling Improvements. Stults JF; Choi YJ; Schaefer CE; Illangasekare TH; Higgins CP Environ Sci Technol; 2022 Jun; 56(12):7963-7975. PubMed ID: 35549168 [TBL] [Abstract][Full Text] [Related]
54. Global distributions, source-type dependencies, and concentration ranges of per- and polyfluoroalkyl substances in groundwater. Johnson GR; Brusseau ML; Carroll KC; Tick GR; Duncan CM Sci Total Environ; 2022 Oct; 841():156602. PubMed ID: 35690215 [TBL] [Abstract][Full Text] [Related]
55. PFOS Mass Flux Reduction/Mass Removal: Impacts of a Lower-Permeability Sand Lens within Otherwise Homogeneous Systems. Hitzelberger M; Khan NA; Mohamed RAM; Brusseau ML; Carroll KC Environ Sci Technol; 2022 Oct; 56(19):13675-13685. PubMed ID: 36126139 [TBL] [Abstract][Full Text] [Related]
56. Concentration and distribution of per- and polyfluoroalkyl substances (PFAS) in the Asan Lake area of South Korea. Lee YM; Lee JY; Kim MK; Yang H; Lee JE; Son Y; Kho Y; Choi K; Zoh KD J Hazard Mater; 2020 Jan; 381():120909. PubMed ID: 31352148 [TBL] [Abstract][Full Text] [Related]
57. Genotoxicity assessment of per- and polyfluoroalkyl substances mixtures in human liver cells (HepG2). Ojo AF; Peng C; Ng JC Toxicology; 2022 Dec; 482():153359. PubMed ID: 36341878 [TBL] [Abstract][Full Text] [Related]
58. Electrochemical degradation of per- and poly-fluoroalkyl substances using boron-doped diamond electrodes. Uwayezu JN; Carabante I; Lejon T; van Hees P; Karlsson P; Hollman P; Kumpiene J J Environ Manage; 2021 Jul; 290():112573. PubMed ID: 33873022 [TBL] [Abstract][Full Text] [Related]
59. The influence of NAPL distribution on the transport of PFOS in Co-contaminated media. Liu H; Guo Z; Zhu Y; Van Glubt S; Brusseau ML J Hazard Mater; 2024 Jan; 462():132794. PubMed ID: 37862902 [TBL] [Abstract][Full Text] [Related]
60. In-situ sequestration of perfluoroalkyl substances using polymer-stabilized ion exchange resin. Liu C; Chu J; Cápiro NL; Fortner JD; Pennell KD J Hazard Mater; 2022 Jan; 422():126960. PubMed ID: 34449348 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]