These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34273775)

  • 1. Field-scale investigation of nanoscale zero-valent iron (NZVI) injection parameters for enhanced delivery of NZVI particles to groundwater.
    Ahn JY; Kim C; Jun SC; Hwang I
    Water Res; 2021 Sep; 202():117402. PubMed ID: 34273775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. nZVI injection into variably saturated soils: Field and modeling study.
    Chowdhury AI; Krol MM; Kocur CM; Boparai HK; Weber KP; Sleep BE; O'Carroll DM
    J Contam Hydrol; 2015 Dec; 183():16-28. PubMed ID: 26496622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater.
    Busch J; Meißner T; Potthoff A; Bleyl S; Georgi A; Mackenzie K; Trabitzsch R; Werban U; Oswald SE
    J Contam Hydrol; 2015 Oct; 181():59-68. PubMed ID: 25864966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subsurface transport of carboxymethyl cellulose (CMC)-stabilized nanoscale zero valent iron (nZVI): Numerical and statistical analysis.
    Asad MA; Khan UT; Krol MM
    J Contam Hydrol; 2021 Dec; 243():103870. PubMed ID: 34418819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the transport of the aggregates of nanoscale zerovalent iron under vertical and horizontal flow.
    Li J; Ghoshal S
    Chemosphere; 2016 Feb; 144():1398-407. PubMed ID: 26498094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media.
    Strutz TJ; Hornbruch G; Dahmke A; Köber R
    J Contam Hydrol; 2016 Aug; 191():54-65. PubMed ID: 27244572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of hydrogen gas production, trapping and bubble-facilitated transport during nanoscale zero-valent iron (nZVI) injection in porous media.
    Mohammed O; Mumford KG; Sleep BE
    J Contam Hydrol; 2020 Oct; 234():103677. PubMed ID: 32663719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes.
    Laumann S; Micić V; Hofmann T
    Water Res; 2014 Mar; 50():70-9. PubMed ID: 24361704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overlooked encounter process that affects physical behaviors of stabilized nanoscale zero-valent iron during in situ groundwater remediation.
    Xie Y; Zhang M; Ma L; Du T; Zhou D; Fu ML; Yuan B; Li XY; Hu YB
    J Hazard Mater; 2024 Jan; 461():132547. PubMed ID: 37717448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field demonstration of enhanced removal of chlorinated solvents in groundwater using biochar-supported nanoscale zero-valent iron.
    Qian L; Chen Y; Ouyang D; Zhang W; Han L; Yan J; Kvapil P; Chen M
    Sci Total Environ; 2020 Jan; 698():134215. PubMed ID: 31494413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media.
    Busch J; Meißner T; Potthoff A; Oswald SE
    J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI).
    Fu R; Yang Y; Xu Z; Zhang X; Guo X; Bi D
    Chemosphere; 2015 Nov; 138():726-34. PubMed ID: 26267258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel, direct-push approach for detecting sulfidated nanoparticulate zero valent iron (S-nZVI) in sediments using reactive and non-reactive fluorophores.
    Reischer M; Christensen AG; Weber K; Tobler DJ; Dideriksen K
    J Contam Hydrol; 2021 Dec; 243():103896. PubMed ID: 34695716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of sucrose-modified nanoscale zero-valent iron in saturated porous media: role of media size, injection rate and input concentration.
    Li H; Zhao YS; Han ZT; Hong M
    Water Sci Technol; 2015; 72(9):1463-71. PubMed ID: 26524436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of multiple injections on the transport of CMC-nZVI in saturated sand columns.
    Wu W; Han L; Nie X; Gu M; Li J; Chen M
    Sci Total Environ; 2021 Aug; 784():147160. PubMed ID: 33901948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of nitrate from groundwater by nano-scale zero-valent iron injection pulses in continuous-flow packed soil columns.
    Gibert O; Abenza M; Reig M; Vecino X; Sánchez D; Arnaldos M; Cortina JL
    Sci Total Environ; 2022 Mar; 810():152300. PubMed ID: 34896509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores.
    Chekli L; Brunetti G; Marzouk ER; Maoz-Shen A; Smith E; Naidu R; Shon HK; Lombi E; Donner E
    Environ Pollut; 2016 Sep; 216():636-645. PubMed ID: 27357483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone.
    Fagerlund F; Illangasekare TH; Phenrat T; Kim HJ; Lowry GV
    J Contam Hydrol; 2012 Apr; 131(1-4):9-28. PubMed ID: 22326687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron.
    Johnson RL; Nurmi JT; O'Brien Johnson GS; Fan D; O'Brien Johnson RL; Shi Z; Salter-Blanc AJ; Tratnyek PG; Lowry GV
    Environ Sci Technol; 2013 Feb; 47(3):1573-80. PubMed ID: 23311327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study.
    Wei YT; Wu SC; Chou CM; Che CH; Tsai SM; Lien HL
    Water Res; 2010 Jan; 44(1):131-40. PubMed ID: 19800096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.