These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34273827)

  • 1. Towards automatic airborne pollen monitoring: From commercial devices to operational by mitigating class-imbalance in a deep learning approach.
    Schaefer J; Milling M; Schuller BW; Bauer B; Brunner JO; Traidl-Hoffmann C; Damialis A
    Sci Total Environ; 2021 Nov; 796():148932. PubMed ID: 34273827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Classification of Airborne Pollen using Neural Networks.
    Schiele J; Damialis A; Rabe F; Schmitt M; Glaser M; Haring F; Brunner JO; Bauer B; Schuller B; Traidl-Hoffmann C
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4474-4478. PubMed ID: 31946859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting Airborne Pollen Using an Automatic, Real-Time Monitoring System: Evidence from Two Sites.
    Plaza MP; Kolek F; Leier-Wirtz V; Brunner JO; Traidl-Hoffmann C; Damialis A
    Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Airborne pollen grain detection from partially labelled data utilising semi-supervised learning.
    Jin B; Milling M; Plaza MP; Brunner JO; Traidl-Hoffmann C; Schuller BW; Damialis A
    Sci Total Environ; 2023 Sep; 891():164295. PubMed ID: 37211136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An operational robotic pollen monitoring network based on automatic image recognition.
    Oteros J; Weber A; Kutzora S; Rojo J; Heinze S; Herr C; Gebauer R; Schmidt-Weber CB; Buters JTM
    Environ Res; 2020 Dec; 191():110031. PubMed ID: 32814105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Methods for Improving Pollen Monitoring.
    Kubera E; Kubik-Komar A; Piotrowska-Weryszko K; Skrzypiec M
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamics of pollen seasons of the most allergenic plants - 15-year observations in Warsaw.
    Lipiec A; Rapiejko P; Furmańczyk K; Jurkiewicz D
    Otolaryngol Pol; 2018 Sep; 72(6):44-53. PubMed ID: 30647196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allergenic pollen season variations in the past two decades under changing climate in the United States.
    Zhang Y; Bielory L; Mi Z; Cai T; Robock A; Georgopoulos P
    Glob Chang Biol; 2015 Apr; 21(4):1581-9. PubMed ID: 25266307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Airborne pollen calendar of Portugal: a 15-year survey (2002-2017).
    Camacho I; Caeiro E; Nunes C; Morais-Almeida M
    Allergol Immunopathol (Madr); 2020; 48(2):194-201. PubMed ID: 31601498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternaria spore exposure in Bavaria, Germany, measured using artificial intelligence algorithms in a network of BAA500 automatic pollen monitors.
    González-Alonso M; Boldeanu M; Koritnik T; Gonçalves J; Belzner L; Stemmler T; Gebauer R; Grewling Ł; Tummon F; Maya-Manzano JM; Ariño AH; Schmidt-Weber C; Buters J
    Sci Total Environ; 2023 Feb; 861():160180. PubMed ID: 36403848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Building an automatic pollen monitoring network (ePIN): Selection of optimal sites by clustering pollen stations.
    Oteros J; Sofiev M; Smith M; Clot B; Damialis A; Prank M; Werchan M; Wachter R; Weber A; Kutzora S; Heinze S; Herr CEW; Menzel A; Bergmann KC; Traidl-Hoffmann C; Schmidt-Weber CB; Buters JTM
    Sci Total Environ; 2019 Oct; 688():1263-1274. PubMed ID: 31726556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of the airborne pollen spectrum in Guadalajara (central Spain) and estimation of the potential allergy risk.
    Rojo J; Rapp A; Lara B; Sabariego S; Fernández-González F; Pérez-Badia R
    Environ Monit Assess; 2016 Mar; 188(3):130. PubMed ID: 26832913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of reference data from different Rapid-E devices supports automatic pollen detection in more locations.
    Matavulj P; Cristofori A; Cristofolini F; Gottardini E; Brdar S; Sikoparija B
    Sci Total Environ; 2022 Dec; 851(Pt 2):158234. PubMed ID: 36007635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural networks for increased accuracy of allergenic pollen monitoring.
    Polling M; Li C; Cao L; Verbeek F; de Weger LA; Belmonte J; De Linares C; Willemse J; de Boer H; Gravendeel B
    Sci Rep; 2021 May; 11(1):11357. PubMed ID: 34059743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human exposure to airborne pollen and relationships with symptoms and immune responses: Indoors versus outdoors, circadian patterns and meteorological effects in alpine and urban environments.
    Damialis A; Häring F; Gökkaya M; Rauer D; Reiger M; Bezold S; Bounas-Pyrros N; Eyerich K; Todorova A; Hammel G; Gilles S; Traidl-Hoffmann C
    Sci Total Environ; 2019 Feb; 653():190-199. PubMed ID: 30408667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic and Online Pollen Monitoring.
    Oteros J; Pusch G; Weichenmeier I; Heimann U; Möller R; Röseler S; Traidl-Hoffmann C; Schmidt-Weber C; Buters JT
    Int Arch Allergy Immunol; 2015; 167(3):158-66. PubMed ID: 26302820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Methods of studying airborne pollen and pollen calendars].
    Thibaudon M; Caillaud D; Besancenot JP
    Rev Mal Respir; 2013 Jun; 30(6):463-79. PubMed ID: 23835319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking seasonal changes in diversity of pollen allergen exposure: Targeted metabarcoding of a subtropical aerobiome.
    Campbell BC; Al Kouba J; Timbrell V; Noor MJ; Massel K; Gilding EK; Angel N; Kemish B; Hugenholtz P; Godwin ID; Davies JM
    Sci Total Environ; 2020 Dec; 747():141189. PubMed ID: 32799020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise automatic classification of 46 different pollen types with convolutional neural networks.
    Sevillano V; Holt K; Aznarte JL
    PLoS One; 2020; 15(6):e0229751. PubMed ID: 32574174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards European automatic bioaerosol monitoring: Comparison of 9 automatic pollen observational instruments with classic Hirst-type traps.
    Maya-Manzano JM; Tummon F; Abt R; Allan N; Bunderson L; Clot B; Crouzy B; Daunys G; Erb S; Gonzalez-Alonso M; Graf E; Grewling Ł; Haus J; Kadantsev E; Kawashima S; Martinez-Bracero M; Matavulj P; Mills S; Niederberger E; Lieberherr G; Lucas RW; O'Connor DJ; Oteros J; Palamarchuk J; Pope FD; Rojo J; Šaulienė I; Schäfer S; Schmidt-Weber CB; Schnitzler M; Šikoparija B; Skjøth CA; Sofiev M; Stemmler T; Triviño M; Zeder Y; Buters J
    Sci Total Environ; 2023 Mar; 866():161220. PubMed ID: 36584954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.