BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34273896)

  • 1. Diffuse reflectance spectroscopy based rapid coal rank estimation: A machine learning enabled framework.
    Begum N; Maiti A; Chakravarty D; Das BS
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 263():120150. PubMed ID: 34273896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of breast cancer of various clinical stages based on serum FT-IR spectroscopy combined with multiple algorithms.
    Yang B; Chen C; Cheng C; Cheng H; Yan Z; Chen F; Zhu Z; Zhang H; Yue F; Lv X
    Photodiagnosis Photodyn Ther; 2021 Mar; 33():102199. PubMed ID: 33515764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Rapid Coal Classification Based on Confidence Machine and Near Infrared Spectroscopy].
    Wang YS; Yang M; Luo ZY; Wang Y; Li G; Hu RF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1685-9. PubMed ID: 30052372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coal Classification Based on Reflection Spectroscopy and the IAT-TELM Algorithm.
    Li B; Xiao D; Xie H; Huang J; Yan Z
    ACS Omega; 2023 Sep; 8(38):35232-35241. PubMed ID: 37780011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China.
    Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q
    Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of diffuse reflectance spectroscopy measurements for direct and rapid screening of pesticides: A case study of spinach.
    Ndung'u CN; Kaniu MI; Wanjohi JM
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121556. PubMed ID: 35772198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Machine Learning-Based Water Potability Prediction Model by Using Synthetic Minority Oversampling Technique and Explainable AI.
    Patel J; Amipara C; Ahanger TA; Ladhva K; Gupta RK; Alsaab HO; Althobaiti YS; Ratna R
    Comput Intell Neurosci; 2022; 2022():9283293. PubMed ID: 36177311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coal identification based on a deep network and reflectance spectroscopy.
    Xiao D; Le TTG; Doan TT; Le BT
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120859. PubMed ID: 35033804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine-Learning Approach to Optimize SMOTE Ratio in Class Imbalance Dataset for Intrusion Detection.
    Seo JH; Kim YH
    Comput Intell Neurosci; 2018; 2018():9704672. PubMed ID: 30515202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive Analysis of Diabetes-Risk with Class Imbalance.
    ElSeddawy AI; Karim FK; Hussein AM; Khafaga DS
    Comput Intell Neurosci; 2022; 2022():3078025. PubMed ID: 36268149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of Chicken Parts Using a Portable Near-Infrared (NIR) Spectrophotometer and Machine Learning.
    Nolasco Perez IM; Badaró AT; Barbon S; Barbon APA; Pollonio MAR; Barbin DF
    Appl Spectrosc; 2018 Dec; 72(12):1774-1780. PubMed ID: 30063378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Social Reminiscence in Older Adults' Everyday Conversations: Automated Detection Using Natural Language Processing and Machine Learning.
    Ferrario A; Demiray B; Yordanova K; Luo M; Martin M
    J Med Internet Res; 2020 Sep; 22(9):e19133. PubMed ID: 32866108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning Feature Extraction Approach for Hematopoietic Cancer Subtype Classification.
    Park KH; Batbaatar E; Piao Y; Theera-Umpon N; Ryu KH
    Int J Environ Res Public Health; 2021 Feb; 18(4):. PubMed ID: 33672300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skin tear classification using machine learning from digital RGB image.
    Nagata T; Noyori SS; Noguchi H; Nakagami G; Kitamura A; Sanada H
    J Tissue Viability; 2021 Nov; 30(4):588-593. PubMed ID: 33902993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor.
    Liu L; Jiao Y; Li X; Ouyang Y; Shi D
    Comput Methods Programs Biomed; 2020 Nov; 196():105624. PubMed ID: 32623348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine-Learning Classification of Soil Bulk Density in Salt Marsh Environments.
    Salehi Hikouei I; Kim SS; Mishra DR
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34199102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network intrusion detection using oversampling technique and machine learning algorithms.
    Ahmed HA; Hameed A; Bawany NZ
    PeerJ Comput Sci; 2022; 8():e820. PubMed ID: 35111914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A near-infrared spectroscopy dataset of coal and coal-measure rock under diverse conditions.
    Lv Y; Wang S; Yang E; Ge S
    Sci Data; 2024 Jun; 11(1):628. PubMed ID: 38877010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical data classification using an enhanced SMOTE and chaotic evolutionary feature selection.
    Sreejith S; Khanna Nehemiah H; Kannan A
    Comput Biol Med; 2020 Nov; 126():103991. PubMed ID: 32987205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft Clustering for Enhancing the Diagnosis of Chronic Diseases over Machine Learning Algorithms.
    Aldhyani THH; Alshebami AS; Alzahrani MY
    J Healthc Eng; 2020; 2020():4984967. PubMed ID: 32211144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.