These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 3427413)

  • 1. Cholecystokinin potentiates dopamine inhibition of mesencephalic dopamine neurons in vitro.
    Brodie MS; Dunwiddie TV
    Brain Res; 1987 Nov; 425(1):106-13. PubMed ID: 3427413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological effects of diphenylpyrazolidinone cholecystokinin-B and cholecystokinin-A antagonists on midbrain dopamine neurons.
    Rasmussen K; Czachura JF; Stockton ME; Howbert JJ
    J Pharmacol Exp Ther; 1993 Jan; 264(1):480-8. PubMed ID: 8423546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological effects of cholecystokinin octapeptide on identified rat nigrostriatal dopaminergic neurons.
    Freeman AS; Chiodo LA
    Brain Res; 1988 Jan; 439(1-2):266-74. PubMed ID: 3359189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholecystokinin-dopamine coexistence: electrophysiological actions corresponding to cholecystokinin receptor subtype.
    Hommer DW; Stoner G; Crawley JN; Paul SM; Skirboll LR
    J Neurosci; 1986 Oct; 6(10):3039-43. PubMed ID: 3760947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of the acute and chronic administration of CP 96,345, a selective neurokinin1 receptor antagonist, on midbrain dopamine neurons in the rat: a single unit, extracellular recording study.
    Minabe Y; Emori K; Toor A; Stutzmann GE; Ashby CR
    Synapse; 1996 Jan; 22(1):35-45. PubMed ID: 8822476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased neuronal responsiveness to cholecystokinin and dopamine induced by lesioning mesolimbic dopaminergic neurons: an electrophysiological study in the rat.
    Debonnel G; de Montigny C
    Synapse; 1988; 2(5):537-45. PubMed ID: 2903570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infusions of cholecystokinin octapeptide into the ventral tegmental area potentiate amphetamine conditioned place preferences.
    Pettit HO; Mueller K
    Psychopharmacology (Berl); 1989; 99(3):423-6. PubMed ID: 2594910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microinjection of cholecystokinin into the rat ventral tegmental area potentiates dopamine-induced hypolocomotion.
    Crawley JN
    Synapse; 1989; 3(4):346-55. PubMed ID: 2740993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topographical analysis of nucleus accumbens sites at which cholecystokinin potentiates dopamine-induced hyperlocomotion in the rat.
    Crawley JN; Hommer DW; Skirboll LR
    Brain Res; 1985 Jun; 335(2):337-41. PubMed ID: 4005562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular dopamine in the anterior nucleus accumbens is distinctly affected by ventral tegmental area administration of cholecystokinin and apomorphine: data from in vivo voltammetry.
    Reum T; Fink H; Marsden CA; Morgenstern R
    Neuropeptides; 1998 Apr; 32(2):161-6. PubMed ID: 9639255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol inhibition of m-current and ethanol-induced direct excitation of ventral tegmental area dopamine neurons.
    Koyama S; Brodie MS; Appel SB
    J Neurophysiol; 2007 Mar; 97(3):1977-85. PubMed ID: 16956995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the CCK-A receptor antagonist CR 1409 on the activity of rat midbrain dopamine neurons.
    Zhang J; Chiodo LA; Freeman AS
    Peptides; 1991; 12(2):339-43. PubMed ID: 2067986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clozapine modulates midbrain dopamine neuron firing via interaction with the NMDA receptor complex.
    Schwieler L; Engberg G; Erhardt S
    Synapse; 2004 May; 52(2):114-22. PubMed ID: 15034917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of acetylcholine release by cholecystokinin in striatum: receptor specificity; role of dopaminergic neuronal activity.
    Petkova-Kirova P; Giovannini MG; Kalfin R; Rakovska A
    Brain Res Bull; 2012 Dec; 89(5-6):177-84. PubMed ID: 22981453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Release of cholecystokinin from rat midbrain slices and modulatory effect of D2DA receptor stimulation.
    Freeman AS; Chiodo LA; Lentz SI; Wade K; Bannon MJ
    Brain Res; 1991 Aug; 555(2):281-7. PubMed ID: 1682000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute and chronic administration of the selective sigma1 receptor agonist SA4503 significantly alters the activity of midbrain dopamine neurons in rats: An in vivo electrophysiological study.
    Minabe Y; Matsuno K; Ashby CR
    Synapse; 1999 Aug; 33(2):129-40. PubMed ID: 10400891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of cholecystokinin octapeptide and dopamine on nucleus accumbens neurons.
    White FJ; Wang RY
    Brain Res; 1984 May; 300(1):161-6. PubMed ID: 6145498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin.
    Freeman AS; Bunney BS
    Brain Res; 1987 Mar; 405(1):46-55. PubMed ID: 3032350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholecystokinin activates CCKB receptors to excite cells and depress EPSCs in the rat rostral nucleus accumbens in vitro.
    Kombian SB; Ananthalakshmi KV; Parvathy SS; Matowe WC
    J Physiol; 2004 Feb; 555(Pt 1):71-84. PubMed ID: 14673185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptor selectivity of cholecystokinin effects on mesoaccumbens dopamine neurons.
    Kelland MD; Zhang J; Chiodo LA; Freeman AS
    Synapse; 1991 Jun; 8(2):137-43. PubMed ID: 1882334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.