These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34274336)

  • 21. Steady-State Kinetics of Enzyme-Catalyzed Hydrolysis of Echothiophate, a P-S Bonded Organophosphorus as Monitored by Spectrofluorimetry.
    Zueva IV; Lushchekina SV; Daudé D; Chabrière E; Masson P
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32192230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic bioscavengers against organophosphorus agents: mechanistic issues of self-reactivating cholinesterases.
    Lushchekina S; Masson P
    Toxicology; 2018 Nov; 409():91-102. PubMed ID: 30056174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-immobilized Phosphorylated Cofactors and Enzymes as Self-Sufficient Heterogeneous Biocatalysts for Chemical Processes.
    Velasco-Lozano S; Benítez-Mateos AI; López-Gallego F
    Angew Chem Int Ed Engl; 2017 Jan; 56(3):771-775. PubMed ID: 28000978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cross-linked polymersomes as nanoreactors for controlled and stabilized single and cascade enzymatic reactions.
    Gräfe D; Gaitzsch J; Appelhans D; Voit B
    Nanoscale; 2014 Sep; 6(18):10752-61. PubMed ID: 25099948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Progress in the development of enzyme-based nerve agent bioscavengers.
    Nachon F; Brazzolotto X; Trovaslet M; Masson P
    Chem Biol Interact; 2013 Dec; 206(3):536-44. PubMed ID: 23811386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase.
    Ghanem E; Raushel FM
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):459-70. PubMed ID: 15982683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Engineering of catalytic bioscavengers of organophosphorus compounds].
    Masson P; Nachon F; Rochu D
    Bull Acad Natl Med; 2007 Jan; 191(1):95-111; discussion 112. PubMed ID: 17645110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting of organophosphorus compound bioscavengers to the surface of red blood cells.
    McCranor BJ; Hofstetter CA; Olert MA; Moorad-Doctor D; Cerasoli DM; Garcia GE
    Chem Biol Interact; 2016 Nov; 259(Pt B):205-210. PubMed ID: 27163849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial degradation of organophosphorus xenobiotics: metabolic pathways and molecular basis.
    Karpouzas DG; Singh BK
    Adv Microb Physiol; 2006; 51():119-85. PubMed ID: 17091564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined effect of organophosphorus hydrolase and oxime on the reactivation rate of diethylphosphoryl-acetylcholinesterase conjugates.
    Ashani Y; Leader H; Rothschild N; Dosoretz C
    Biochem Pharmacol; 1998 Jan; 55(2):159-68. PubMed ID: 9448738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatic reactions in confined environments.
    Küchler A; Yoshimoto M; Luginbühl S; Mavelli F; Walde P
    Nat Nanotechnol; 2016 May; 11(5):409-20. PubMed ID: 27146955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High activity of enzymes immobilized in colloidal nanoreactors.
    Neumann T; Haupt B; Ballauff M
    Macromol Biosci; 2004 Jan; 4(1):13-6. PubMed ID: 15468281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-enzyme cascade reactions using protein-polymer surfactant self-standing films.
    Farrugia T; Perriman AW; Sharma KP; Mann S
    Chem Commun (Camb); 2017 Feb; 53(13):2094-2097. PubMed ID: 28124039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalytic Detoxification of Organophosphorus Nerve Agents by Butyrylcholinesterase-Polymer-Oxime Bioscavengers.
    Zhang L; Murata H; Amitai G; Smith PN; Matyjaszewski K; Russell AJ
    Biomacromolecules; 2020 Sep; 21(9):3867-3877. PubMed ID: 32786529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Therapeutic Nanoreactors as In Vivo Nanoplatforms for Cancer Therapy.
    Mukerabigwi JF; Ge Z; Kataoka K
    Chemistry; 2018 Oct; 24(59):15706-15724. PubMed ID: 29572992
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering enzyme-coupled hybrid nanoflowers: The quest for optimum performance to meet biocatalytic challenges and opportunities.
    Bilal M; Asgher M; Shah SZH; Iqbal HMN
    Int J Biol Macromol; 2019 Aug; 135():677-690. PubMed ID: 31152838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A virus-based single-enzyme nanoreactor.
    Comellas-Aragonès M; Engelkamp H; Claessen VI; Sommerdijk NA; Rowan AE; Christianen PC; Maan JC; Verduin BJ; Cornelissen JJ; Nolte RJ
    Nat Nanotechnol; 2007 Oct; 2(10):635-9. PubMed ID: 18654389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoreactor Design Based on Self-Assembling Protein Nanocages.
    Ren H; Zhu S; Zheng G
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30704048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glutathione-Dependent Detoxification Processes in Astrocytes.
    Dringen R; Brandmann M; Hohnholt MC; Blumrich EM
    Neurochem Res; 2015 Dec; 40(12):2570-82. PubMed ID: 25428182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro evaluation of the catalytic activity of paraoxonases and phosphotriesterases predicts the enzyme circulatory levels required for in vivo protection against organophosphate intoxications.
    Ashani Y; Leader H; Aggarwal N; Silman I; Worek F; Sussman JL; Goldsmith M
    Chem Biol Interact; 2016 Nov; 259(Pt B):252-256. PubMed ID: 27163850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.