BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 3427436)

  • 1. Site specificity in the development of tolerance to stimulation-produced analgesia from the periaqueductal gray matter of the rat.
    Morgan MM; Liebeskind JC
    Brain Res; 1987 Nov; 425(2):356-9. PubMed ID: 3427436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. II. Differential characteristics of the analgesia induced by ventral and dorsal PAG stimulation.
    Fardin V; Oliveras JL; Besson JM
    Brain Res; 1984 Jul; 306(1-2):125-39. PubMed ID: 6466968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. I. The production of behavioral side effects together with analgesia.
    Fardin V; Oliveras JL; Besson JM
    Brain Res; 1984 Jul; 306(1-2):105-23. PubMed ID: 6540613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation-produced analgesia in the mouse: evidence for laterality of opioid mediation.
    Marek P; Yirmiya R; Liebeskind JC
    Brain Res; 1991 Feb; 541(1):154-6. PubMed ID: 2029617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between analgesia and cardiovascular changes induced by electrical stimulation of the mesencephalic periaqueductal gray matter in the rat.
    Depaulis A; Pechnick RN; Liebeskind JC
    Brain Res; 1988 Jun; 451(1-2):326-32. PubMed ID: 3251592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diazepam dissociates the analgesic and aversive effects of periaqueductal gray stimulation in the rat.
    Morgan MM; Depaulis A; Liebeskind JC
    Brain Res; 1987 Oct; 423(1-2):395-8. PubMed ID: 3676817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dorsal raphe nucleus: a re-evaluation of its proposed role in opiate analgesia systems.
    Klatt DS; Guinan MJ; Culhane ES; Carstens E; Watkins LR
    Brain Res; 1988 May; 447(2):246-52. PubMed ID: 3390696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analysis of the 'tolerance' which develops to analgetic electrical stimulation of the midbrain periaqueductal grey in freely moving rats.
    Millan MJ; Członkowski A; Herz A
    Brain Res; 1987 Dec; 435(1-2):97-111. PubMed ID: 3427472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opiate and serotonergic mechanisms of stimulation-produced analgesia within the periaqueductal gray.
    Nichols DS; Thorn BE; Berntson GG
    Brain Res Bull; 1989 Apr; 22(4):717-24. PubMed ID: 2736397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periaqueductal gray matter stimulation produced analgesia in the pentobarbital anesthetized rat.
    Morgan MM; Depaulis A; Liebeskind JC
    Proc West Pharmacol Soc; 1985; 28():161-3. PubMed ID: 4070242
    [No Abstract]   [Full Text] [Related]  

  • 11. Ability of periaqueductal gray subdivisions and adjacent loci to elicit analgesia and ability of naloxone to reverse analgesia.
    Thorn BE; Applegate L; Johnson SW
    Behav Neurosci; 1989 Dec; 103(6):1335-9. PubMed ID: 2558678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periaqueductal gray stimulation produces a spinally mediated, opioid antinociception for the inflamed hindpaw of the rat.
    Morgan MM; Gold MS; Liebeskind JC; Stein C
    Brain Res; 1991 Apr; 545(1-2):17-23. PubMed ID: 1860042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiallodynic effects produced by stimulation of the periaqueductal gray matter in a rat model of neuropathic pain.
    Lee BH; Park SH; Won R; Park YG; Sohn JH
    Neurosci Lett; 2000 Sep; 291(1):29-32. PubMed ID: 10962146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of the periaqueductal gray matter inhibits nociception at the supraspinal as well as spinal level.
    Morgan MM; Sohn JH; Liebeskind JC
    Brain Res; 1989 Nov; 502(1):61-6. PubMed ID: 2819459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of the responses of neurons in the rat spinal cord to noxious skin heating by stimulation in midbrain periaqueductal gray or lateral reticular formation.
    Carstens E; Watkins LR
    Brain Res; 1986 Sep; 382(2):266-77. PubMed ID: 3756519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of the periaqueductal gray matter of the rat produces a preferential ipsilateral antinociception.
    Levine R; Morgan MM; Cannon JT; Liebeskind JC
    Brain Res; 1991 Dec; 567(1):140-4. PubMed ID: 1815821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for opioid and non-opioid forms of stimulation-produced analgesia in the rat.
    Cannon JT; Prieto GJ; Lee A; Liebeskind JC
    Brain Res; 1982 Jul; 243(2):315-21. PubMed ID: 7104742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depletion of central beta-endorphin blocks midbrain stimulation produced analgesia in the freely-moving rat.
    Millan MH; Millan MJ; Herz A
    Neuroscience; 1986 Jul; 18(3):641-9. PubMed ID: 2944030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analgesia from the periaqueductal gray in the developing rat: focal injections of morphine or glutamate and effects of intrathecal injection of methysergide or phentolamine.
    Tive LA; Barr GA
    Brain Res; 1992 Jul; 584(1-2):92-109. PubMed ID: 1355395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroanatomical and neuropharmacological study of opioid pathways in the mesencephalic tectum: effect of mu(1)- and kappa-opioid receptor blockade on escape behavior induced by electrical stimulation of the inferior colliculus.
    Osaki MY; Castellan-Baldan L; Calvo F; Carvalho AD; Felippotti TT; de Oliveira R; Ubiali WA; Paschoalin-Maurin T; Elias-Filho DH; Motta V; da Silva LA; Coimbra NC
    Brain Res; 2003 Dec; 992(2):179-92. PubMed ID: 14625057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.