These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34274425)

  • 1. Habitual Exposure to Trigeminal Stimuli and Its Effects on the Processing of Chemosensory Stimuli.
    Joshi A; Thaploo D; Yan X; Zang Y; Warr J; Hummel T
    Neuroscience; 2021 Aug; 470():70-77. PubMed ID: 34274425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequent minty chewing gum use is associated with increased trigeminal sensitivity: An fMRI study.
    Han P; Penzler M; Jonathan W; Hummel T
    Brain Res; 2020 Mar; 1730():146663. PubMed ID: 31931000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bimodal odor processing with a trigeminal component at sub- and suprathreshold levels.
    Pellegrino R; Drechsler E; Hummel C; Warr J; Hummel T
    Neuroscience; 2017 Nov; 363():43-49. PubMed ID: 28739522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human operculo-insular cortex is pain-preferentially but not pain-exclusively activated by trigeminal and olfactory stimuli.
    Lötsch J; Walter C; Felden L; Nöth U; Deichmann R; Oertel BG
    PLoS One; 2012; 7(4):e34798. PubMed ID: 22496865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human olfactory lateralization requires trigeminal activation.
    Croy I; Schulz M; Blumrich A; Hummel C; Gerber J; Hummel T
    Neuroimage; 2014 Sep; 98():289-95. PubMed ID: 24825502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-modal integration of intranasal stimuli: a functional magnetic resonance imaging study.
    Boyle JA; Frasnelli J; Gerber J; Heinke M; Hummel T
    Neuroscience; 2007 Oct; 149(1):223-31. PubMed ID: 17869005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateralization of brain activation to imagination and smell of odors using functional magnetic resonance imaging (fMRI): left hemispheric localization of pleasant and right hemispheric localization of unpleasant odors.
    Henkin RI; Levy LM
    J Comput Assist Tomogr; 2001; 25(4):493-514. PubMed ID: 11473178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional MRI of congenital hyposmia: brain activation to odors and imagination of odors and tastes.
    Henkin RI; Levy LM
    J Comput Assist Tomogr; 2002; 26(1):39-61. PubMed ID: 11801904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tractography indicates lateralized differences between trigeminal and olfactory pathways.
    Thaploo D; Joshi A; Georgiopoulos C; Warr J; Hummel T
    Neuroimage; 2022 Nov; 261():119518. PubMed ID: 35926760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidimensional representation of odors in the human olfactory cortex.
    Fournel A; Ferdenzi C; Sezille C; Rouby C; Bensafi M
    Hum Brain Mapp; 2016 Jun; 37(6):2161-72. PubMed ID: 26991044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of olfactory function, age, and gender on trigeminally mediated sensations: a study based on the lateralization of chemosensory stimuli.
    Hummel T; Futschik T; Frasnelli J; Hüttenbrink KB
    Toxicol Lett; 2003 Apr; 140-141():273-80. PubMed ID: 12676474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of training on chemosensory event-related potentials and interactions between the olfactory and trigeminal systems.
    Livermore A; Hummel T
    Chem Senses; 2004 Jan; 29(1):41-51. PubMed ID: 14752039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central processing of odor concentration is a temporal phenomenon as revealed by chemosensory event-related potentials (CSERP).
    Pause BM; Sojka B; Ferstl R
    Chem Senses; 1997 Feb; 22(1):9-26. PubMed ID: 9056082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some like it, some do not: behavioral responses and central processing of olfactory-trigeminal mixture perception.
    Müschenich FS; Sichtermann T; Di Francesco ME; Rodriguez-Raecke R; Heim L; Singer M; Wiesmann M; Freiherr J
    Brain Struct Funct; 2021 Jan; 226(1):247-261. PubMed ID: 33355693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. fMRI-based Neuronal Response to New Odorants in the Newborn Brain.
    Adam-Darque A; Grouiller F; Vasung L; Ha-Vinh Leuchter R; Pollien P; Lazeyras F; Hüppi PS
    Cereb Cortex; 2018 Aug; 28(8):2901-2907. PubMed ID: 29106509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain activation during odor perception in males and females.
    Bengtsson S; Berglund H; Gulyas B; Cohen E; Savic I
    Neuroreport; 2001 Jul; 12(9):2027-33. PubMed ID: 11435941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain response to odors presented inside the nose, directly in front of the nose or with ambient air.
    Zang Y; Han P; Chen B; Hähner A; Yan X; Hummel T
    Eur Arch Otorhinolaryngol; 2021 Aug; 278(8):2843-2850. PubMed ID: 33389011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional MR imaging during odor stimulation: preliminary data.
    Yousem DM; Williams SC; Howard RO; Andrew C; Simmons A; Allin M; Geckle RJ; Suskind D; Bullmore ET; Brammer MJ; Doty RL
    Radiology; 1997 Sep; 204(3):833-8. PubMed ID: 9280268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of cerebral activation during olfactory and trigeminal stimulations.
    Lombion S; Comte A; Tatu L; Brand G; Moulin T; Millot JL
    Hum Brain Mapp; 2009 Mar; 30(3):821-8. PubMed ID: 18330871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional magnetic resonance imaging study of human olfaction and normal aging.
    Wang J; Eslinger PJ; Smith MB; Yang QX
    J Gerontol A Biol Sci Med Sci; 2005 Apr; 60(4):510-4. PubMed ID: 15933393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.