These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3427450)

  • 1. Intravitreal kainic acid severely reduces the size of the developing optic tectum in newly hatched chickens.
    Tung NN; Morgan IG; Ehrlich D
    Brain Res; 1987 Dec; 435(1-2):153-9. PubMed ID: 3427450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intravitreal kainic acid permanently eliminates off-pathways from chicken retina.
    Dvorak DR; Morgan IG
    Neurosci Lett; 1983 Apr; 36(3):249-53. PubMed ID: 6866330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective abolition of OFF responses in kainic acid-lesioned chicken retina.
    Golcich MA; Morgan IG; Dvorak DR
    Brain Res; 1990 Dec; 535(2):288-300. PubMed ID: 2073607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific ganglion cell death induced by intravitreal kainic acid in the chicken retina.
    Ehrlich D; Teuchert G; Morgan IG
    Brain Res; 1987 Jul; 415(2):342-6. PubMed ID: 3607502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative analysis of the effects of excitatory neurotoxins on retinal ganglion cells in the chick.
    Tung NN; Morgan IG; Ehrlich D
    Vis Neurosci; 1990 Mar; 4(3):217-23. PubMed ID: 2078503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embryonic chick retinal ganglion cells identified "in vitro". Their survival is dependent on a factor from the optic tectum.
    Nurcombe V; Bennett MR
    Exp Brain Res; 1981; 44(3):249-58. PubMed ID: 6171447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose-dependent effects of intravitreal kainic acid on specific cell types in chicken retina.
    Ingham CA; Morgan IG
    Neuroscience; 1983 May; 9(1):165-81. PubMed ID: 6877594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of substance P-like immunoreactive retinal ganglion cells and their pattern of termination in the optic tectum of chick (Gallus gallus).
    Ehrlich D; Keyser KT; Karten HJ
    J Comp Neurol; 1987 Dec; 266(2):220-33. PubMed ID: 2449469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optic tectum in congenitally monophthalmic fishes and chicks.
    Pritz-Hohmeier S; Hanisch S; Malz CR; Michel H; Meyer DL; Reichenbach A
    J Hirnforsch; 1993; 34(3):407-15. PubMed ID: 8270791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compensation for population size mismatches in the hamster retinotectal system: alterations in the organization of retinal projections.
    Pallas SL; Finlay BL
    Vis Neurosci; 1991 Mar; 6(3):271-81. PubMed ID: 2054328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calretinin-immunoreactive elements in the retina and optic tectum of the frog, Rana esculenta.
    Gábriel R; Völgyi B; Pollák E
    Brain Res; 1998 Jan; 782(1-2):53-62. PubMed ID: 9519249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target-derived and locally derived neurotrophins support retinal ganglion cell survival in the neonatal rat retina.
    Spalding KL; Rush RA; Harvey AR
    J Neurobiol; 2004 Sep; 60(3):319-27. PubMed ID: 15281070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of target tissue in regulating the development of retinal ganglion cells in the albino rat: effects of kainate lesions in the superior colliculus.
    Carpenter P; Sefton AJ; Dreher B; Lim WL
    J Comp Neurol; 1986 Sep; 251(2):240-59. PubMed ID: 3782500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog: I. The size of the contralateral and ipsilateral projections.
    Singman EL; Scalia F
    J Comp Neurol; 1990 Dec; 302(4):792-809. PubMed ID: 1707068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The locus of optic nerve head representation in the chick retinotectal map lacks a retinal projection.
    Puelles L; Martinez S; Martinez-De-La-Torre M
    Neurosci Lett; 1987 Aug; 79(1-2):23-8. PubMed ID: 2444909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further study of the outward displacement of retinal ganglion cells during optic nerve regeneration, with a note on the normal cells of Dogiel in the adult frog.
    Singman EL; Scalia F
    J Comp Neurol; 1990 Nov; 301(1):80-92. PubMed ID: 2077052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of ciliary neurotrophic factor activated by retinal Müller cells in eyes with NMDA- and kainic acid-induced neuronal death.
    Honjo M; Tanihara H; Kido N; Inatani M; Okazaki K; Honda Y
    Invest Ophthalmol Vis Sci; 2000 Feb; 41(2):552-60. PubMed ID: 10670488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of light exposure following an intraocular injection of [3H]N-acetylmannosamine on the labeling of gangliosides and glycoproteins of retina ganglion cells and optic tectum of singly caged chickens.
    Caputto BL; Nores GA; Cemborain BN; Caputto R
    Brain Res; 1982 Aug; 245(2):231-8. PubMed ID: 7127071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topography of regenerating optic fibers in goldfish traced with local wheat germ injections into retina: evidence for discontinuous microtopography in the retinotectal projection.
    Meyer RL; Sakurai K; Schauwecker E
    J Comp Neurol; 1985 Sep; 239(1):27-43. PubMed ID: 4044930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in nNOS and NADPH diaphorase in frog retina and tectum after axotomy and FGF-2 application.
    Soto I; López-Roca T; Blagburn JM; Blanco RE
    Brain Res; 2006 Aug; 1103(1):65-75. PubMed ID: 16808907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.