These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
704 related articles for article (PubMed ID: 34274611)
1. SAR-U-Net: Squeeze-and-excitation block and atrous spatial pyramid pooling based residual U-Net for automatic liver segmentation in Computed Tomography. Wang J; Lv P; Wang H; Shi C Comput Methods Programs Biomed; 2021 Sep; 208():106268. PubMed ID: 34274611 [TBL] [Abstract][Full Text] [Related]
2. Automatic Liver Segmentation Using EfficientNet and Attention-Based Residual U-Net in CT. Wang J; Zhang X; Lv P; Wang H; Cheng Y J Digit Imaging; 2022 Dec; 35(6):1479-1493. PubMed ID: 35711074 [TBL] [Abstract][Full Text] [Related]
3. A multiple-channel and atrous convolution network for ultrasound image segmentation. Zhang L; Zhang J; Li Z; Song Y Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105 [TBL] [Abstract][Full Text] [Related]
4. HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images. Kushnure DT; Talbar SN Comput Methods Programs Biomed; 2022 Jan; 213():106501. PubMed ID: 34752959 [TBL] [Abstract][Full Text] [Related]
5. ASD-Net: a novel U-Net based asymmetric spatial-channel convolution network for precise kidney and kidney tumor image segmentation. Ji Z; Mu J; Liu J; Zhang H; Dai C; Zhang X; Ganchev I Med Biol Eng Comput; 2024 Jun; 62(6):1673-1687. PubMed ID: 38326677 [TBL] [Abstract][Full Text] [Related]
6. An improved residual U-Net with morphological-based loss function for automatic liver segmentation in computed tomography. Lv P; Wang J; Zhang X; Ji C; Zhou L; Wang H Math Biosci Eng; 2022 Jan; 19(2):1426-1447. PubMed ID: 35135211 [TBL] [Abstract][Full Text] [Related]
7. MADR-Net: multi-level attention dilated residual neural network for segmentation of medical images. Balraj K; Ramteke M; Mittal S; Bhargava R; Rathore AS Sci Rep; 2024 Jun; 14(1):12699. PubMed ID: 38830932 [TBL] [Abstract][Full Text] [Related]
8. ResTransUnet: An effective network combined with Transformer and U-Net for liver segmentation in CT scans. Ou J; Jiang L; Bai T; Zhan P; Liu R; Xiao H Comput Biol Med; 2024 Jul; 177():108625. PubMed ID: 38823365 [TBL] [Abstract][Full Text] [Related]
9. ASU-Net++: A nested U-Net with adaptive feature extractions for liver tumor segmentation. Gao Q; Almekkawy M Comput Biol Med; 2021 Sep; 136():104688. PubMed ID: 34523421 [TBL] [Abstract][Full Text] [Related]
10. Modified U-Net (mU-Net) With Incorporation of Object-Dependent High Level Features for Improved Liver and Liver-Tumor Segmentation in CT Images. Seo H; Huang C; Bassenne M; Xiao R; Xing L IEEE Trans Med Imaging; 2020 May; 39(5):1316-1325. PubMed ID: 31634827 [TBL] [Abstract][Full Text] [Related]
11. Multi-scale attention and deep supervision-based 3D UNet for automatic liver segmentation from CT. Wang J; Zhang X; Guo L; Shi C; Tamura S Math Biosci Eng; 2023 Jan; 20(1):1297-1316. PubMed ID: 36650812 [TBL] [Abstract][Full Text] [Related]
12. SERR-U-Net: Squeeze-and-Excitation Residual and Recurrent Block-Based U-Net for Automatic Vessel Segmentation in Retinal Image. Wang J; Li X; Lv P; Shi C Comput Math Methods Med; 2021; 2021():5976097. PubMed ID: 34422093 [TBL] [Abstract][Full Text] [Related]
13. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images. Zhang Z; Zhao T; Gay H; Zhang W; Sun B Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620 [TBL] [Abstract][Full Text] [Related]
14. ADR-Net: Context extraction network based on M-Net for medical image segmentation. Ji L; Jiang X; Gao Y; Fang Z; Cai Q; Wei Z Med Phys; 2020 Sep; 47(9):4254-4264. PubMed ID: 32602963 [TBL] [Abstract][Full Text] [Related]
15. Deep supervision and atrous inception-based U-Net combining CRF for automatic liver segmentation from CT. Lv P; Wang J; Zhang X; Shi C Sci Rep; 2022 Oct; 12(1):16995. PubMed ID: 36216965 [TBL] [Abstract][Full Text] [Related]
16. CAM-Wnet: An effective solution for accurate pulmonary embolism segmentation. Liu Z; Yuan H; Wang H Med Phys; 2022 Aug; 49(8):5294-5303. PubMed ID: 35609213 [TBL] [Abstract][Full Text] [Related]
17. Hybrid-attention densely connected U-Net with GAP for extracting livers from CT volumes. Chen Y; Hu F; Wang Y; Zheng C Med Phys; 2022 Feb; 49(2):1015-1033. PubMed ID: 35015305 [TBL] [Abstract][Full Text] [Related]
18. Cascaded atrous convolution and spatial pyramid pooling for more accurate tumor target segmentation for rectal cancer radiotherapy. Men K; Boimel P; Janopaul-Naylor J; Zhong H; Huang M; Geng H; Cheng C; Fan Y; Plastaras JP; Ben-Josef E; Xiao Y Phys Med Biol; 2018 Sep; 63(18):185016. PubMed ID: 30109986 [TBL] [Abstract][Full Text] [Related]
19. mfeeU-Net: A multi-scale feature extraction and enhancement U-Net for automatic liver segmentation from CT Images. Liu J; Yan Z; Zhou C; Shao L; Han Y; Song Y Math Biosci Eng; 2023 Feb; 20(5):7784-7801. PubMed ID: 37161172 [TBL] [Abstract][Full Text] [Related]
20. [Image segmentation of skin lesions based on dense atrous spatial pyramid pooling and attention mechanism]. Yin W; Zhou D; Fan T; Yu Z; Li Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Dec; 39(6):1108-1116. PubMed ID: 36575079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]