These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 34274764)

  • 41. Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy.
    Zhang A; Bian R; Li L; Wang X; Zhao Y; Hussain Q; Pan G
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18977-86. PubMed ID: 26213131
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Effects of Selected Biochars Application on the Microbial Community Structures and Diversities in the Rhizosphere of Water Spinach (
    Cui BJ; Cui EP; Hu C; Fan XY; Gao F
    Huan Jing Ke Xue; 2020 Dec; 41(12):5636-5647. PubMed ID: 33374081
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands.
    Man Y; Wang B; Wang J; Slaný M; Yan H; Li P; El-Naggar A; Shaheen SM; Rinklebe J; Feng X
    Environ Int; 2021 Aug; 153():106527. PubMed ID: 33784588
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biochar and ash derived from silicon-rich rice husk decrease inorganic arsenic species in rice grain.
    Leksungnoen P; Wisawapipat W; Ketrot D; Aramrak S; Nookabkaew S; Rangkadilok N; Satayavivad J
    Sci Total Environ; 2019 Sep; 684():360-370. PubMed ID: 31153082
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Field experiment on the effects of sepiolite and biochar on the remediation of Cd- and Pb-polluted farmlands around a Pb-Zn mine in Yunnan Province, China.
    Zhan F; Zeng W; Yuan X; Li B; Li T; Zu Y; Jiang M; Li Y
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7743-7751. PubMed ID: 30671759
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Long-term effects of tillage methods on heavy metal accumulation and availability in purple paddy soil].
    Chang TJ; Cui XQ; Ruan Z; Zhao XL
    Huan Jing Ke Xue; 2014 Jun; 35(6):2381-91. PubMed ID: 25158521
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of biochar amendment on the soil silicon cycle in a soil-rice ecosystem.
    Wang Y; Xiao X; Zhang K; Chen B
    Environ Pollut; 2019 May; 248():823-833. PubMed ID: 30856498
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of alkaline and chemically engineered biochar on soil properties and phosphorus bioavailability in maize.
    Qayyum MF; Haider G; Iqbal M; Hameed S; Ahmad N; Rehman MZU; Majeed A; Rizwan M; Ali S
    Chemosphere; 2021 Mar; 266():128980. PubMed ID: 33243575
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil.
    Wen E; Yang X; Chen H; Shaheen SM; Sarkar B; Xu S; Song H; Liang Y; Rinklebe J; Hou D; Li Y; Wu F; Pohořelý M; Wong JWC; Wang H
    J Hazard Mater; 2021 Apr; 407():124344. PubMed ID: 33162240
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Achieving the safe use of Cd- and As-contaminated agricultural land with an Fe-based biochar: A field study.
    Tang X; Shen H; Chen M; Yang X; Yang D; Wang F; Chen Z; Liu X; Wang H; Xu J
    Sci Total Environ; 2020 Mar; 706():135898. PubMed ID: 31864997
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of sulfur-rich biochar amendment on microbial methylation of mercury in rhizosphere paddy soil and methylmercury accumulation in rice.
    Hu H; Xi B; Tan W
    Environ Pollut; 2021 Oct; 286():117290. PubMed ID: 33984776
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Performance evaluation of crop residue and kitchen waste-derived biochar for eco-efficient removal of arsenic from soils of the Indo-Gangetic plain: A step towards sustainable pollution management.
    Kumar A; Bhattacharya T; Shaikh WA; Roy A; Mukherjee S; Kumar M
    Environ Res; 2021 Sep; 200():111758. PubMed ID: 34303680
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice--A field study over four rice seasons in Hunan, China.
    Chen D; Guo H; Li R; Li L; Pan G; Chang A; Joseph S
    Sci Total Environ; 2016 Jan; 541():1489-1498. PubMed ID: 26490528
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Residual effects of frequently available organic amendments on cadmium bioavailability and accumulation in wheat.
    Rehman MZU; Zafar M; Waris AA; Rizwan M; Ali S; Sabir M; Usman M; Ayub MA; Ahmad Z
    Chemosphere; 2020 Apr; 244():125548. PubMed ID: 32050343
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system.
    Rajendran M; Shi L; Wu C; Li W; An W; Liu Z; Xue S
    Chemosphere; 2019 May; 222():314-322. PubMed ID: 30708165
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of biochars combined with ferrous sulfate and pig manure on the bioavailability of Cd and potential phytotoxicity for wheat in an alkaline contaminated soil.
    Chen Z; Lu Z; Zhang Y; Li B; Chen C; Shen K
    Sci Total Environ; 2021 Jan; 753():141832. PubMed ID: 32891994
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impacts of biochar and silicate fertilizer on arsenic accumulation in rice (Oryza sativa L.).
    Jin W; Wang Z; Sun Y; Wang Y; Bi C; Zhou L; Zheng X
    Ecotoxicol Environ Saf; 2020 Feb; 189():109928. PubMed ID: 31767458
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Effects of biochar application on greenhouse gas emission from paddy soil and its physical and chemical properties].
    Liu YX; Wang YF; Lü HH; Chen Y; Tang X; Wu CY; Zhong ZK; Yang SM
    Ying Yong Sheng Tai Xue Bao; 2013 Aug; 24(8):2166-72. PubMed ID: 24380334
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An examination of the role of biochar and biochar water-extractable substances on the sorption of ionizable herbicides in rice paddy soils.
    García-Jaramillo M; Trippe KM; Helmus R; Knicker HE; Cox L; Hermosín MC; Parsons JR; Kalbitz K
    Sci Total Environ; 2020 Mar; 706():135682. PubMed ID: 31784150
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation.
    Rehman MZ; Rizwan M; Ghafoor A; Naeem A; Ali S; Sabir M; Qayyum MF
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16897-906. PubMed ID: 26109220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.