BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 34274765)

  • 1. Cyanobacterial dominance and succession: Factors, mechanisms, predictions, and managements.
    Wang Z; Akbar S; Sun Y; Gu L; Zhang L; Lyu K; Huang Y; Yang Z
    J Environ Manage; 2021 Nov; 297():113281. PubMed ID: 34274765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harmful freshwater algal blooms, with an emphasis on cyanobacteria.
    Paerl HW; Fulton RS; Moisander PH; Dyble J
    ScientificWorldJournal; 2001 Apr; 1():76-113. PubMed ID: 12805693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of cyanobacterial blooms and environmental variation on zooplankton and eukaryotic phytoplankton in a large, shallow, eutrophic lake in China.
    Zhao K; Wang L; You Q; Pan Y; Liu T; Zhou Y; Zhang J; Pang W; Wang Q
    Sci Total Environ; 2021 Jun; 773():145421. PubMed ID: 33582356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How rising CO
    Visser PM; Verspagen JMH; Sandrini G; Stal LJ; Matthijs HCP; Davis TW; Paerl HW; Huisman J
    Harmful Algae; 2016 Apr; 54():145-159. PubMed ID: 28073473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters.
    Tanvir RU; Hu Z; Zhang Y; Lu J
    Environ Pollut; 2021 Dec; 290():118056. PubMed ID: 34488165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting cyanobacteria bloom occurrence in lakes and reservoirs before blooms occur.
    Zhao CS; Shao NF; Yang ST; Ren H; Ge YR; Feng P; Dong BE; Zhao Y
    Sci Total Environ; 2019 Jun; 670():837-848. PubMed ID: 30921717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum.
    Paerl H
    Adv Exp Med Biol; 2008; 619():217-37. PubMed ID: 18461771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Succession Pattern and Consequences of the Dominant Species During Cyanobacterial Bloom and Its Influencing Factors].
    Ouyang T; Zhao L; Ji LL; Yang SQ; Zheng BH; Du YX; Li JX; Li YX; Shi JQ; Wu ZX
    Huan Jing Ke Xue; 2022 Oct; 43(10):4480-4488. PubMed ID: 36224134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viruses may facilitate the cyanobacterial blooming during summer bloom succession in Xiangxi Bay of Three Gorges Reservoir, China.
    Peng K; Jiao Y; Gao J; Xiong W; Zhao Y; Yang S; Liao M
    Front Microbiol; 2023; 14():1112590. PubMed ID: 36970686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling cyanobacterial blooms in tropical reservoirs: The role of physicochemical variables and trophic interactions.
    Amorim CA; Dantas ÊW; Moura ADN
    Sci Total Environ; 2020 Nov; 744():140659. PubMed ID: 32711303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibiotic-accelerated cyanobacterial growth and aquatic community succession towards the formation of cyanobacterial bloom in eutrophic lake water.
    Xu S; Jiang Y; Liu Y; Zhang J
    Environ Pollut; 2021 Dec; 290():118057. PubMed ID: 34467883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of the photosynthetic activity and biomass of the phytoplankton community to increasing nutrients during cyanobacterial blooms in Meiliang Bay, Lake Taihu.
    Wu P; Lu Y; Lu Y; Dai J; Huang T
    Water Environ Res; 2020 Jan; 92(1):138-148. PubMed ID: 31486194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental warming promotes phytoplankton species sorting towards cyanobacterial blooms and leads to potential changes in ecosystem functioning.
    Moresco GA; Dias JD; Cabrera-Lamanna L; Baladán C; Bizic M; Rodrigues LC; Meerhoff M
    Sci Total Environ; 2024 May; 924():171621. PubMed ID: 38467252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shifts in phytoplankton and zooplankton communities in three cyanobacteria-dominated lakes after treatment with hydrogen peroxide.
    Piel T; Sandrini G; Weenink EFJ; Qin H; Herk MJV; Morales-Grooters ML; Schuurmans JM; Slot PC; Wijn G; Arntz J; Zervou SK; Kaloudis T; Hiskia A; Huisman J; Visser PM
    Harmful Algae; 2024 Mar; 133():102585. PubMed ID: 38485435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics.
    Reichwaldt ES; Ghadouani A
    Water Res; 2012 Apr; 46(5):1372-93. PubMed ID: 22169160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs.
    Yang JR; Lv H; Isabwe A; Liu L; Yu X; Chen H; Yang J
    Water Res; 2017 Sep; 120():52-63. PubMed ID: 28478295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variabilities in autumn cyanobacterial responses to ecosystem external enrichments based on nutrient addition bioassay in Pengxi River, Three Gorges Reservoir, China.
    Nwankwegu AS; Zhang L; Xie D; Li Y
    Environ Pollut; 2022 Jun; 303():119103. PubMed ID: 35283199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal dynamics of succession and growth limitation of phytoplankton for nutrients and light in a large shallow lake.
    Liu X; Chen L; Zhang G; Zhang J; Wu Y; Ju H
    Water Res; 2021 Apr; 194():116910. PubMed ID: 33601234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into cyanobacterial blooms and the response of associated microbial communities in freshwater ecosystems.
    Du C; Li G; Xia R; Li C; Zhu Q; Li X; Li J; Zhao C; Tian Z; Zhang L
    Environ Pollut; 2022 Sep; 309():119781. PubMed ID: 35841988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemodiversity of Cyanobacterial Toxins Driven by Future Scenarios of Climate Warming and Eutrophication.
    Yang Y; Wang H; Yan S; Wang T; Zhang P; Zhang H; Wang H; Hansson LA; Xu J
    Environ Sci Technol; 2023 Aug; 57(32):11767-11778. PubMed ID: 37535835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.