These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34275283)

  • 41. Azoreductase and Target Simultaneously Activated Fluorescent Monitoring for Cytochrome c Release under Hypoxia.
    Tang J; Huang C; Shu J; Zheng J; Ma D; Li J; Yang R
    Anal Chem; 2018 May; 90(9):5865-5872. PubMed ID: 29595257
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Near-Infrared Fluorescence MOF Nanoprobe for Adenosine Triphosphate-Guided Imaging in Colitis.
    Zhao YT; Chen XX; Jiang WL; Li Y; Fei J; Li CY
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47840-47847. PubMed ID: 32981314
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simultaneous Monitoring of Mitochondrial Temperature and ATP Fluctuation Using Fluorescent Probes in Living Cells.
    Qiao J; Chen C; Shangguan D; Mu X; Wang S; Jiang L; Qi L
    Anal Chem; 2018 Nov; 90(21):12553-12558. PubMed ID: 30295464
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering a Reversible Fluorescent Probe for Real-Time Live-Cell Imaging and Quantification of Mitochondrial ATP.
    Ren TB; Wen SY; Wang L; Lu P; Xiong B; Yuan L; Zhang XB
    Anal Chem; 2020 Mar; 92(6):4681-4688. PubMed ID: 32098468
    [TBL] [Abstract][Full Text] [Related]  

  • 45. "DNA traffic lights": concept of wavelength-shifting DNA probes and application in an aptasensor.
    Holzhauser C; Wagenknecht HA
    Chembiochem; 2012 May; 13(8):1136-8. PubMed ID: 22532374
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses.
    Johnson JE; Perkins GA; Giddabasappa A; Chaney S; Xiao W; White AD; Brown JM; Waggoner J; Ellisman MH; Fox DA
    Mol Vis; 2007 Jun; 13():887-919. PubMed ID: 17653034
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel nucleic acid aptamer tag: a rapid fluorescence strategy using a self-constructing G-quadruplex from AGG trinucleotide repeats.
    Fu B; Park Y; Kim KT; Chen K; Zou G; Wei Q; Peng S; Chen Y; Kim BH; Zhou X
    Chem Commun (Camb); 2018 Oct; 54(81):11487-11490. PubMed ID: 30256356
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An azoreductase activatable, endonuclease-gated nanodevice for spatiotemporal amplification imaging of microRNA-21 in hypoxic tumor cells.
    Peng C; Wu F; Zeng Y; Liu B; Peng R; Zheng J
    Chem Commun (Camb); 2023 Jun; 59(48):7411-7414. PubMed ID: 37233119
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Light-Driven ATP Transmembrane Transport Controlled by DNA Nanomachines.
    Li P; Xie G; Liu P; Kong XY; Song Y; Wen L; Jiang L
    J Am Chem Soc; 2018 Nov; 140(47):16048-16052. PubMed ID: 30372056
    [TBL] [Abstract][Full Text] [Related]  

  • 50. "DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout.
    Walter HK; Bauer J; Steinmeyer J; Kuzuya A; Niemeyer CM; Wagenknecht HA
    Nano Lett; 2017 Apr; 17(4):2467-2472. PubMed ID: 28249387
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A versatile covalent organic framework-based platform for sensing biomolecules.
    Li W; Yang CX; Yan XP
    Chem Commun (Camb); 2017 Oct; 53(83):11469-11471. PubMed ID: 28983542
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single Molecule Fluorescent Colocalization of Split Aptamers for Ultrasensitive Detection of Biomolecules.
    Zhang H; Liu Y; Zhang K; Ji J; Liu J; Liu B
    Anal Chem; 2018 Aug; 90(15):9315-9321. PubMed ID: 30003776
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ratiometric Fluorescent DNA Nanostructure for Mitochondrial ATP Imaging in Living Cells Based on Hybridization Chain Reaction.
    Luo L; Wang M; Zhou Y; Xiang D; Wang Q; Huang J; Liu J; Yang X; Wang K
    Anal Chem; 2021 May; 93(17):6715-6722. PubMed ID: 33887142
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Label-free fluorescent assays based on aptamer-target recognition.
    Tan Y; Zhang X; Xie Y; Zhao R; Tan C; Jiang Y
    Analyst; 2012 May; 137(10):2309-12. PubMed ID: 22451893
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An Acidic-Microenvironment-Driven DNA Nanomachine Enables Specific ATP Imaging in the Extracellular Milieu of Tumor.
    Di Z; Zhao J; Chu H; Xue W; Zhao Y; Li L
    Adv Mater; 2019 Aug; 31(33):e1901885. PubMed ID: 31222950
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A bioresponsive controlled-release biosensor using Au nanocages capped with an aptamer-based molecular gate and its application in living cells.
    Wang W; Yan T; Cui S; Wan J
    Chem Commun (Camb); 2012 Oct; 48(82):10228-30. PubMed ID: 22968197
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rational design and development of a universal baby spinach-based sensing platform for the detection of biomolecules.
    Ji D; Li Z; Kwok CK
    Analyst; 2019 Dec; 144(24):7173-7177. PubMed ID: 31750452
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single-molecule DNA origami aptasensors for real-time biomarker detection.
    Cervantes-Salguero K; Freeley M; Chávez JL; Palma M
    J Mater Chem B; 2020 Aug; 8(30):6352-6356. PubMed ID: 32716449
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A MOF-Shell-Confined I-Motif-Based pH Probe (MOFC-i) Strategy for Sensitive and Dynamic Imaging of Cell Surface pH.
    Yang H; Chen J; Liang Y; Zhang Y; Yin W; Xu Y; Liu SY; Dai Z; Zou X
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45291-45299. PubMed ID: 34542269
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A fluorescence aptasensor based on two-dimensional sheet metal-organic frameworks for monitoring adenosine triphosphate.
    Hai XM; Li N; Wang K; Zhang ZQ; Zhang J; Dang FQ
    Anal Chim Acta; 2018 Jan; 998():60-66. PubMed ID: 29153087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.