These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34275355)

  • 1. Kinetics of solid-liquid interface motion in molecular dynamics and phase-field models: crystallization of chromium and silicon.
    Karim ET; He M; Salhoumi A; Zhigilei LV; Galenko PK
    Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200320. PubMed ID: 34275355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast traveling waves in the phase-field theory: effective mobility approach versus kinetic energy approach.
    Salhoumi A; Galenko PK
    J Phys Condens Matter; 2020 May; 32(20):204003. PubMed ID: 31931497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of rapid growth and melting of Al
    Rozas RE; Ankudinov V; Galenko PK
    J Phys Condens Matter; 2022 Oct; 34(49):. PubMed ID: 36228604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hodograph equation for slow and fast anisotropic interface propagation.
    Galenko PK; Salhoumi A
    Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200324. PubMed ID: 34275359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic description of metastable fcc/liquid phase equilibria and solidification kinetics in Al-Cu alloys.
    Fang Y; Galenko PK; Liu D; Hack K; Rettenmayr M; Lippmann S
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2217):20200327. PubMed ID: 34974731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic transition in the order-disorder transformation at a solid/liquid interface.
    Galenko PK; Nizovtseva IG; Reuther K; Rettenmayr M
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations.
    Weiss VC; Rullich M; Köhler C; Frauenheim T
    J Chem Phys; 2011 Jul; 135(3):034701. PubMed ID: 21787017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian Data Assimilation of Temperature Dependence of Solid-Liquid Interfacial Properties of Nickel.
    Nagatsuma Y; Ohno M; Takaki T; Shibuta Y
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-field simulations of velocity selection in rapidly solidified binary alloys.
    Fan J; Greenwood M; Haataja M; Provatas N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031602. PubMed ID: 17025638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive Calculation of the Crystallization Tendency of Model Pharmaceuticals in the Supercooled State from Molecular Dynamics Simulations.
    Gerges J; Affouard F
    J Phys Chem B; 2015 Aug; 119(33):10768-83. PubMed ID: 26226388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal growth kinetics in undercooled melts of pure Ge, Si and Ge-Si alloys.
    Herlach DM; Simons D; Pichon PY
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ice growth rate: Temperature dependence and effect of heat dissipation.
    Montero de Hijes P; Espinosa JR; Vega C; Sanz E
    J Chem Phys; 2019 Jul; 151(4):044509. PubMed ID: 31370558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Equilibrium Modeling of Concentration-Driven processes with Constant Chemical Potential Molecular Dynamics Simulations.
    Karmakar T; Finney AR; Salvalaglio M; Yazaydin AO; Perego C
    Acc Chem Res; 2023 May; 56(10):1156-1167. PubMed ID: 37120847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase and solute fields across the solid-liquid interface of a binary alloy.
    Conti M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1913-20. PubMed ID: 11969981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear phase-field model for electrode-electrolyte interface evolution.
    Liang L; Qi Y; Xue F; Bhattacharya S; Harris SJ; Chen LQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051609. PubMed ID: 23214795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scale-coupling and interface-pinning effects in the phase-field-crystal model.
    Huang ZF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012401. PubMed ID: 23410338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of rapid solidification and crystal growth kinetics in glass-forming alloys.
    Galenko PK; Ankudinov V; Reuther K; Rettenmayr M; Salhoumi A; Kharanzhevskiy EV
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180205. PubMed ID: 30827218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melting of polymer single crystals studied by dynamic Monte Carlo simulations.
    Ren Y; Ma A; Li J; Jiang X; Ma Y; Toda A; Hu W
    Eur Phys J E Soft Matter; 2010 Nov; 33(3):189-202. PubMed ID: 20957404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion behavior in a liquid-liquid interfacial crystallization by molecular dynamics simulations.
    Kitayama A; Yamanaka S; Kadota K; Shimosaka A; Shirakawa Y; Hidaka J
    J Chem Phys; 2009 Nov; 131(17):174707. PubMed ID: 19895035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.