These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 34275363)

  • 1. Ostwald ripening in the presence of simultaneous occurrence of various mass transfer mechanisms: an extension of the Lifshitz-Slyozov theory.
    Alexandrova IV; Alexandrov DV; Makoveeva EV
    Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200308. PubMed ID: 34275363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From nucleation and coarsening to coalescence in metastable liquids.
    Alexandrov DV; Alexandrova IV
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190247. PubMed ID: 32279640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonmonotonic dynamics in Lifshitz-Slyozov-Wagner theory: Ostwald ripening in nanoparticle catalysts.
    Rinaldo SG; Lee W; Stumper J; Eikerling M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041601. PubMed ID: 23214593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of non-stationarity and interphase curvature on the growth dynamics of spherical crystals in a metastable liquid.
    Makoveeva EV; Alexandrov DV
    Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200307. PubMed ID: 34275364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of flocculation and coalescence on the evolution of the average radius of an O/W emulsion. Is a linear slope of R3 vs. t an unmistakable signature of Ostwald ripening?
    Urbina-Villalba G; Forgiarini A; Rahn K; Lozsán A
    Phys Chem Chem Phys; 2009 Dec; 11(47):11184-95. PubMed ID: 20024387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the theory of crystal growth in metastable systems with biomedical applications: protein and insulin crystallization.
    Alexandrov DV; Nizovtseva IG
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180214. PubMed ID: 30827215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of Ostwald Ripening in Emulsions via Coarse-Grained Simulations.
    Khedr A; Striolo A
    J Chem Theory Comput; 2019 Sep; 15(9):5058-5068. PubMed ID: 31411875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Return radius and volume of recrystallized material in Ostwald ripening.
    Haußer F; Lakshtanov E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):062601. PubMed ID: 23367992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ostwald ripening of binary alloy particles.
    Burlakov VM; Kantorovich L
    J Chem Phys; 2011 Jan; 134(2):024521. PubMed ID: 21241134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ostwald ripening of aqueous microbubble solutions.
    Inoue S; Kimura Y; Uematsu Y
    J Chem Phys; 2022 Dec; 157(24):244704. PubMed ID: 36586988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusional mechanism of strong selection in ostwald ripening.
    Rubinstein I; Zaltzman B
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):709-17. PubMed ID: 11046314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical analysis of Ostwald ripening in two-dimensional systems.
    Dubrovskii VG; Kazansky MA; Nazarenko MV; Adzhemyan LT
    J Chem Phys; 2011 Mar; 134(9):094507. PubMed ID: 21384985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution kinetics of Ostwald ripening at large volume fraction and with coalescence.
    Madras G; McCoy BJ
    J Colloid Interface Sci; 2003 May; 261(2):423-33. PubMed ID: 16256552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ostwald ripening of beta-carotene nanoparticles.
    Liu Y; Kathan K; Saad W; Prud'homme RK
    Phys Rev Lett; 2007 Jan; 98(3):036102. PubMed ID: 17358697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase field crystal simulations of the kinetics of Ostwald ripening in two dimensions.
    Moats KA; Asadi E; Laradji M
    Phys Rev E; 2019 Jan; 99(1-1):012803. PubMed ID: 30780278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The shape of dendritic tips: a test of theory with computations and experiments.
    Alexandrov DV; Toropova LV; Titova EA; Kao A; Demange G; Galenko PK; Rettenmayr M
    Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200326. PubMed ID: 34275356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early stages of Ostwald ripening.
    Shneidman VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):010401. PubMed ID: 23944392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening.
    Verma S; Kumar S; Gokhale R; Burgess DJ
    Int J Pharm; 2011 Mar; 406(1-2):145-52. PubMed ID: 21185926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of silver particle formation during photoreduction using in situ time-resolved SAXS analysis.
    Harada M; Katagiri E
    Langmuir; 2010 Dec; 26(23):17896-905. PubMed ID: 21047110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ostwald ripening in multiple-bubble nuclei.
    Watanabe H; Suzuki M; Inaoka H; Ito N
    J Chem Phys; 2014 Dec; 141(23):234703. PubMed ID: 25527953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.