These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34276138)

  • 1. Anti-biofouling implantable catheter using thin-film magnetic microactuators.
    Yang Q; Park H; Nguyen TNH; Rhoads JF; Lee A; Bentley RT; Judy JW; Lee H
    Sens Actuators B Chem; 2018 Nov; 273():1694-1704. PubMed ID: 34276138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyimide-based magnetic microactuators for biofouling removal.
    Qi Yang ; Tran Nguyen ; Chunan Liu ; Miller J; Rhoads JF; Linnes J; Hyowon Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5757-5760. PubMed ID: 28269562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards smart self-clearing glaucoma drainage device.
    Park H; Raffiee AH; John SWM; Ardekani AM; Lee H
    Microsyst Nanoeng; 2018; 4():35. PubMed ID: 31057923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piezoresistor-Embedded Multifunctional Magnetic Microactuators for Implantable Self-Clearing Catheter.
    Yang Q; Lee A; Bentley RT; Lee H
    IEEE Sens J; 2019 Feb; 19(4):1373-1378. PubMed ID: 31579395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Microfabricated Magnetic Actuators for Removing Cellular Occlusion.
    Lee SA; Lee H; Pinney JR; Khialeeva E; Bergsneider M; Judy JW
    J Micromech Microeng; 2011 May; 21(5):54006. PubMed ID: 21886945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical Evaluation of Unobstructing Magnetic Microactuators for Implantable Ventricular Catheters.
    Lee H; Kolahi K; Bergsneider M; Judy JW
    J Microelectromech Syst; 2014 Aug; 23(4):795-802. PubMed ID: 29151776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-cost rapid prototyping of liquid crystal polymer based magnetic microactuators for glaucoma drainage devices.
    Hyunsu Park ; John S; Hyowon Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4212-4215. PubMed ID: 28269212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actuation for flexible and stretchable microdevices.
    Roshan U; Mudugamuwa A; Cha H; Hettiarachchi S; Zhang J; Nguyen NT
    Lab Chip; 2024 Apr; 24(8):2146-2175. PubMed ID: 38507292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of magnetic resonance imaging issues for implantable microfabricated magnetic actuators.
    Lee H; Xu Q; Shellock FG; Bergsneider M; Judy JW
    Biomed Microdevices; 2014 Feb; 16(1):153-61. PubMed ID: 24077662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional evaluation of magnetic microactuators for removing biological accumulation: an in vitro study.
    Lee SA; Pinney JR; Khialeeva E; Bergsneider M; Judy JW
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():947-50. PubMed ID: 19162814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRI compatibility of microfabricated magnetic actuators for implantable catheters: Mechanical evaluations.
    Lee H; Xu Q; Ephrati J; Bergsneider M; Judy JW
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():907-10. PubMed ID: 21096979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Expanding Anchors for Stabilizing Percutaneously Implanted Microdevices in Biological Tissues.
    Bhagavatula S; Thompson D; Dominas C; Haider I; Jonas O
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33917289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing efficiency, speed, and responsivity of vanadium dioxide based photothermally driven actuators using single-wall carbon nanotube thin-films.
    Wang T; Torres D; Fernández FE; Green AJ; Wang C; Sepúlveda N
    ACS Nano; 2015 Apr; 9(4):4371-8. PubMed ID: 25853931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetostrictive Performance of Electrodeposited Tb
    Shim H; Sakamoto K; Inomata N; Toda M; Toan NV; Ono T
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32455654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-organic fouling and anti-biofouling poly(piperazineamide) thin film nanocomposite membranes for low pressure removal of heavy metal ions.
    Bera A; Trivedi JS; Kumar SB; Chandel AKS; Haldar S; Jewrajka SK
    J Hazard Mater; 2018 Feb; 343():86-97. PubMed ID: 28946135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-output bending motion of a soft inflatable microactuator with an actuation conversion mechanism.
    Konishi S; Kosawa H
    Sci Rep; 2020 Jul; 10(1):12038. PubMed ID: 32694714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalytic Microdevice Array Based on Wafer-Scale Conductive Metal-Organic Framework Thin Film for Massive Hydrogen Production.
    Dong J; Chen X; Wang L; Wang S; Zhao Y; Liu Y
    Small; 2023 Nov; 19(45):e2302913. PubMed ID: 37442790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lubricant skin on diverse biomaterials with complex shapes via polydopamine-mediated surface functionalization for biomedical applications.
    Park K; Kim S; Jo Y; Park J; Kim I; Hwang S; Lee Y; Kim SY; Seo J
    Bioact Mater; 2023 Jul; 25():555-568. PubMed ID: 37056251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro Motion Amplifiers for Compact Out-of-Plane Actuation.
    Xie X; Bigdeli Karimi M; Liu S; Myanganbayar B; Livermore C
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Polyimide Film Thickness for Improving the Mechanical Robustness of Stretchable InGaZnO Thin-Film Transistors Prepared on Wavy-Dimensional Elastomer Substrates.
    Jang HW; Kim S; Yoon SM
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34076-34083. PubMed ID: 31438670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.