These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 34276250)

  • 1. Microbial synthesis of vanillin from waste poly(ethylene terephthalate).
    Sadler JC; Wallace S
    Green Chem; 2021 Jul; 23(13):4665-4672. PubMed ID: 34276250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upcycling of poly(ethylene terephthalate) to produce high-value bio-products.
    Diao J; Hu Y; Tian Y; Carr R; Moon TS
    Cell Rep; 2023 Jan; 42(1):111908. PubMed ID: 36640302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals.
    Mudondo J; Lee HS; Jeong Y; Kim TH; Kim S; Sung BH; Park SH; Park K; Cha HG; Yeon YJ; Kim HT
    J Microbiol Biotechnol; 2023 Jan; 33(1):1-14. PubMed ID: 36451300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards carbon neutrality: Sustainable recycling and upcycling strategies and mechanisms for polyethylene terephthalate via biotic/abiotic pathways.
    Yang J; Li Z; Xu Q; Liu W; Gao S; Qin P; Chen Z; Wang A
    Eco Environ Health; 2024 Jun; 3(2):117-130. PubMed ID: 38638172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-Ketoadipic acid production from poly(ethylene terephthalate) waste
    You SM; Lee SS; Ryu MH; Song HM; Kang MS; Jung YJ; Song EC; Sung BH; Park SJ; Joo JC; Kim HT; Cha HG
    RSC Adv; 2023 May; 13(21):14102-14109. PubMed ID: 37180017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial Upcycling of Waste PET to Adipic Acid.
    Valenzuela-Ortega M; Suitor JT; White MFM; Hinchcliffe T; Wallace S
    ACS Cent Sci; 2023 Nov; 9(11):2057-2063. PubMed ID: 38033806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalyst- and Solvent-Free Upcycling of Poly(Ethylene Terephthalate) Waste to Biodegradable Plastics.
    Fang T; Jiang W; Zheng T; Yao X; Zhu W
    Adv Mater; 2024 Nov; 36(46):e2403728. PubMed ID: 39097946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of PET depolymerization for enhanced terephthalic acid recovery from commercial PET and post consumer PET-bottles via low-temperature alkaline hydrolysis.
    Teke S; Saud S; Bhattarai RM; Ali A; Nguyen L; Denra A; Nguyen DB; Mok YS
    Chemosphere; 2024 Oct; 365():143391. PubMed ID: 39307467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic Amounts of an Antibacterial Monomer Enable the Upcycling of Poly(Ethylene Terephthalate) Waste.
    Zhang H; Fang T; Yao X; Li X; Zhu W
    Adv Mater; 2023 May; 35(20):e2210758. PubMed ID: 36809549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Pressurized Alkaline Hydrolysis for Chemical Recycling of Post-Consumer PET Waste.
    Amundarain I; Asueta A; Leivar J; Santin K; Arnaiz S
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes.
    Soong YV; Sobkowicz MJ; Xie D
    Bioengineering (Basel); 2022 Feb; 9(3):. PubMed ID: 35324787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemo-Biological Upcycling of Poly(ethylene terephthalate) to Multifunctional Coating Materials.
    Kim HT; Hee Ryu M; Jung YJ; Lim S; Song HM; Park J; Hwang SY; Lee HS; Yeon YJ; Sung BH; Bornscheuer UT; Park SJ; Joo JC; Oh DX
    ChemSusChem; 2021 Oct; 14(19):4251-4259. PubMed ID: 34339110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of waste polyethylene terephthalate (PET) based nanostructured materials: A review.
    Bian X; Xia G; Xin JH; Jiang S; Ma K
    Chemosphere; 2024 Feb; 350():141076. PubMed ID: 38169200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel terephthalamide diol monomers synthesis from PET waste to Poly(Urethane acrylates).
    Pastore G; Giacomantonio R; Lupidi G; Stella F; Risoluti R; Papa E; Ballini R; Sarasini F; Tirillò J; Marcantoni E; Gabrielli S
    Front Chem; 2023; 11():1234763. PubMed ID: 37521014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Microbes to Bio-Upcycle Polyethylene Terephthalate.
    Dissanayake L; Jayakody LN
    Front Bioeng Biotechnol; 2021; 9():656465. PubMed ID: 34124018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling of Waste Poly(ethylene terephthalate) Bottles by Alkaline Hydrolysis and Recovery of Pure Nanospindle-Shaped Terephthalic Acid.
    Singh S; Sharma S; Umar A; Mehta SK; Bhatti MS; Kansal SK
    J Nanosci Nanotechnol; 2018 Aug; 18(8):5804-5809. PubMed ID: 29458644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic post-consumer poly(ethylene terephthalate) (PET) depolymerization using commercial enzymes.
    Brackmann R; de Oliveira Veloso C; de Castro AM; Langone MAP
    3 Biotech; 2023 May; 13(5):135. PubMed ID: 37124991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-Situ Product Removal for the Enzymatic Depolymerization of Poly(ethylene terephthalate) via a Membrane Reactor.
    Ayafor C; Chang AC; Patel A; Abid U; Xie D; Sobkowicz MJ; Wong HW
    ChemSusChem; 2024 Sep; ():e202400698. PubMed ID: 39227316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentration-Dependent Photocatalytic Upcycling of Poly(ethylene terephthalate) Plastic Waste.
    Kang H; Washington A; Capobianco MD; Yan X; Cruz VV; Weed M; Johnson J; Johns G; Brudvig GW; Pan X; Gu J
    ACS Mater Lett; 2023 Nov; 5(11):3032-3041. PubMed ID: 37969139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards synthetic PETtrophy: Engineering Pseudomonas putida for concurrent polyethylene terephthalate (PET) monomer metabolism and PET hydrolase expression.
    Brandenberg OF; Schubert OT; Kruglyak L
    Microb Cell Fact; 2022 Jun; 21(1):119. PubMed ID: 35717313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.